論文の概要: Spiking Neural Networks and Bio-Inspired Supervised Deep Learning: A
Survey
- arxiv url: http://arxiv.org/abs/2307.16235v1
- Date: Sun, 30 Jul 2023 13:57:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 16:48:36.397495
- Title: Spiking Neural Networks and Bio-Inspired Supervised Deep Learning: A
Survey
- Title(参考訳): ニューラルネットワークのスパイキングとバイオインスパイアされた深層学習:サーベイ
- Authors: Gabriele Lagani, Fabrizio Falchi, Claudio Gennaro, Giuseppe Amato
- Abstract要約: バイオインスパイアされたディープラーニングは、現在のモデルの計算能力と生物学的妥当性を向上させる。
近年のバイオインスパイアされたトレーニング手法は、従来のネットワークとスパイクネットワークの両方において、バックプロップの代替手段として機能している。
- 参考スコア(独自算出の注目度): 9.284385189718236
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For a long time, biology and neuroscience fields have been a great source of
inspiration for computer scientists, towards the development of Artificial
Intelligence (AI) technologies. This survey aims at providing a comprehensive
review of recent biologically-inspired approaches for AI. After introducing the
main principles of computation and synaptic plasticity in biological neurons,
we provide a thorough presentation of Spiking Neural Network (SNN) models, and
we highlight the main challenges related to SNN training, where traditional
backprop-based optimization is not directly applicable. Therefore, we discuss
recent bio-inspired training methods, which pose themselves as alternatives to
backprop, both for traditional and spiking networks. Bio-Inspired Deep Learning
(BIDL) approaches towards advancing the computational capabilities and
biological plausibility of current models.
- Abstract(参考訳): 長い間、生物学と神経科学の分野は、人工知能(AI)技術の発展に向けて、コンピュータ科学者にとって大きなインスピレーションの源だった。
この調査は、最近の生物学的にインスパイアされたAIのアプローチの包括的なレビューを提供することを目的としている。
生体ニューロンにおける計算とシナプス可塑性の主な原理を導入し、スパイキングニューラルネットワーク(SNN)モデルの徹底的なプレゼンテーションを行い、従来のバックプロップベースの最適化が直接適用されないSNNトレーニングに関する主な課題を強調した。
そこで,本研究では,従来のネットワークとスパイクネットワークの両方において,バックプロップの代替となるバイオインスパイアされたトレーニング手法について論じる。
バイオインスパイアされたディープラーニング(BIDL)は、現在のモデルの計算能力と生物学的妥当性の向上にアプローチする。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
スパイクニューラルネットワークは、脳に似たコンピューティングを実現する人工知能のコアの1つである。
本稿では,5つのニューロンモデルの強み,弱さ,適用性について要約し,5つのネットワークトポロジの特徴を解析する。
論文 参考訳(メタデータ) (2023-09-08T16:41:08Z) - Synaptic Plasticity Models and Bio-Inspired Unsupervised Deep Learning:
A Survey [9.284385189718236]
最近登場したディープラーニング(DL)技術は、人工知能(AI)分野における様々なタスクにおいて優れた成果を上げている。
本調査では, シナプスの可塑性モデル, DLシナリオへの応用, スパイキングニューラルネットワーク(SNN)における可塑性モデルとの関係について検討した。
バイオインスパイアされたディープラーニング(bio-Inspired Deep Learning, BIDL)は、私たちの現在の技術だけでなく、インテリジェンスに対する理解も進めることを目指して、エキサイティングな研究の方向性を示している。
論文 参考訳(メタデータ) (2023-07-30T13:58:46Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
生物学的解釈可能性を持つスパイクニューラルネットワークは、徐々に注目を集めている。
このレビューは、さまざまな研究者を惹きつけ、脳にインスパイアされた知性と人工知能の開発を進めたいと考えている。
論文 参考訳(メタデータ) (2022-04-09T09:34:34Z) - Equilibrium Propagation for Complete Directed Neural Networks [0.0]
最も成功したニューラルネットワークの学習アルゴリズム、バックプロパゲーションは生物学的に不可能であると考えられている。
我々は,平衡伝播学習の枠組みを構築し拡張することによって,生物学的に妥当な神経学習の話題に貢献する。
論文 参考訳(メタデータ) (2020-06-15T22:12:30Z) - Artificial neural networks for neuroscientists: A primer [4.771833920251869]
ニューラルネットワーク(ANN)は、神経科学に注目が集まる機械学習において必須のツールである。
この教養的なプライマーでは、ANNを導入し、神経科学的な問題を研究するためにどのように成果を上げてきたかを実証する。
この数学的枠組みを神経生物学に近づけることに焦点をあてて、ANNの分析、構造、学習のカスタマイズ方法について詳述する。
論文 参考訳(メタデータ) (2020-06-01T15:08:42Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。