論文の概要: Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation
- arxiv url: http://arxiv.org/abs/2504.18323v1
- Date: Fri, 25 Apr 2025 13:03:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.770087
- Title: Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation
- Title(参考訳): 自己誘導型データ拡張による外周型テンソルロバスト主成分分析
- Authors: Yangyang Xu, Kexin Li, Li Yang, You-Wei Wen,
- Abstract要約: 適応重み付けを用いた自己誘導型データ拡張手法を提案する。
本研究では,最先端手法と比較して精度と計算効率の両面での改善を示す。
- 参考スコア(独自算出の注目度): 21.981038455329013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Robust Principal Component Analysis (TRPCA) is a fundamental technique for decomposing multi-dimensional data into a low-rank tensor and an outlier tensor, yet existing methods relying on sparse outlier assumptions often fail under structured corruptions. In this paper, we propose a self-guided data augmentation approach that employs adaptive weighting to suppress outlier influence, reformulating the original TRPCA problem into a standard Tensor Principal Component Analysis (TPCA) problem. The proposed model involves an optimization-driven weighting scheme that dynamically identifies and downweights outlier contributions during tensor augmentation. We develop an efficient proximal block coordinate descent algorithm with closed-form updates to solve the resulting optimization problem, ensuring computational efficiency. Theoretical convergence is guaranteed through a framework combining block coordinate descent with majorization-minimization principles. Numerical experiments on synthetic and real-world datasets, including face recovery, background subtraction, and hyperspectral denoising, demonstrate that our method effectively handles various corruption patterns. The results show the improvements in both accuracy and computational efficiency compared to state-of-the-art methods.
- Abstract(参考訳): テンソルロバスト主成分分析(英: Tensor Robust principal Component Analysis、TRPCA)は、多次元データを低ランクテンソルと外れ値テンソルに分解する基本的な手法である。
本稿では,適応重み付けを用いた自己誘導型データ拡張手法を提案し,外乱の影響を抑えるとともに,元のTRPCA問題を標準的なテンソル主成分分析(TPCA)問題に再構成する。
提案モデルでは, テンソル増倍時の外重み付けを動的に同定し, 減重み付けを行う最適化型重み付け方式を用いる。
そこで我々は,計算効率の確保を図るために,クローズドフォーム更新を用いた効率的な近似ブロック座標降下アルゴリズムを開発した。
理論収束は、ブロック座標降下と最大化最小化原理を組み合わせた枠組みによって保証される。
顔の回復,背景部分抽出,ハイパースペクトル化などの合成および実世界のデータセットに関する数値実験により,本手法が様々な汚損パターンを効果的に処理できることが実証された。
その結果,最先端手法と比較して精度と計算効率が向上した。
関連論文リスト
- Robust PCA Based on Adaptive Weighted Least Squares and Low-Rank Matrix Factorization [2.983818075226378]
本稿では,初期コンポーネント不安定時の適応重み係数更新を統合する新しいRPCAモデルを提案する。
提案手法は既存の非インスパイアされた正規化手法よりも優れた性能と効率を提供する。
論文 参考訳(メタデータ) (2024-12-19T08:31:42Z) - Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在の技術のほとんどは、自己回帰エントロピーモデルを備えたVAEベースで、デコードされた因果コンテキストを利用してRD性能を向上する。
本稿では,提案した因果文脈調整損失を用いて因果文脈を的確に調整する方法を初めて検討する。
論文 参考訳(メタデータ) (2024-10-07T09:08:32Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Scalable and Robust Tensor Ring Decomposition for Large-scale Data [12.02023514105999]
本稿では,大規模テンソルデータに欠落したエントリと粗悪な破損を扱えるスケーラブルで堅牢なTR分解アルゴリズムを提案する。
まず, 欠落したエントリを適応的に満たし, 分解過程における外れ値の同定が可能な, 自己重み付き急勾配降下法を開発した。
論文 参考訳(メタデータ) (2023-05-15T22:08:47Z) - Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation [7.265645216663691]
交互勾配法(CoNCPD-APG)により最適化された新しい非負のCANDECOMP/PARAFAC分解アルゴリズムを提案する。
提案手法は,低ランク近似をCONCPD-APG法と組み合わせることで,分解品質を損なうことなく計算負担を大幅に削減することができる。
論文 参考訳(メタデータ) (2023-02-10T08:49:36Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
本稿では、テンソルロバスト主成分分析(RPCA)に取り組む。
希少な腐敗によって汚染された観測から低ランクのテンソルを回収することを目的としている。
提案アルゴリズムは, 最先端行列やテンソルRPCAアルゴリズムよりも, より優れた, よりスケーラブルな性能を実現する。
論文 参考訳(メタデータ) (2022-06-18T04:01:32Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
結合テンソル分解は、潜在結合因子に由来する事前知識を組み込むことで、結合データ構造を明らかにする。
TRは強力な表現能力を持ち、いくつかの多次元データ処理アプリケーションで成功している。
提案手法は, 合成データに関する数値実験で検証され, 実世界のデータに対する実験結果は, 回収精度の観点から, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-09T02:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。