論文の概要: Comparison of marker-less 2D image-based methods for infant pose estimation
- arxiv url: http://arxiv.org/abs/2410.04980v3
- Date: Wed, 26 Mar 2025 14:45:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 16:24:39.947451
- Title: Comparison of marker-less 2D image-based methods for infant pose estimation
- Title(参考訳): 乳児ポーズ推定のためのマーカーレス2次元画像ベース手法の比較
- Authors: Lennart Jahn, Sarah Flügge, Dajie Zhang, Luise Poustka, Sven Bölte, Florentin Wörgötter, Peter B Marschik, Tomas Kulvicius,
- Abstract要約: 成人で訓練された最高パフォーマンスジェネリックモデルであるViTPoseも幼児で最高のパフォーマンスを発揮する。
トップダウンビューから得られるポーズ推定精度は、対角ビューから得られるポーズ推定精度よりも著しく優れている。
- 参考スコア(独自算出の注目度): 2.7726930707973048
- License:
- Abstract: In this study we compare the performance of available generic- and infant-pose estimators for a video-based automated general movement assessment (GMA), and the choice of viewing angle for optimal recordings, i.e., conventional diagonal view used in GMA vs. top-down view. We used 4500 annotated video-frames from 75 recordings of infant spontaneous motor functions from 4 to 26 weeks. To determine which pose estimation method and camera angle yield the best pose estimation accuracy on infants in a GMA related setting, the distance to human annotations and the percentage of correct key-points (PCK) were computed and compared. The results show that the best performing generic model trained on adults, ViTPose, also performs best on infants. We see no improvement from using infant-pose estimators over the generic pose estimators on our infant dataset. However, when retraining a generic model on our data, there is a significant improvement in pose estimation accuracy. The pose estimation accuracy obtained from the top-down view is significantly better than that obtained from the diagonal view, especially for the detection of the hip key-points. The results also indicate limited generalization capabilities of infant-pose estimators to other infant datasets, which hints that one should be careful when choosing infant pose estimators and using them on infant datasets which they were not trained on. While the standard GMA method uses a diagonal view for assessment, pose estimation accuracy significantly improves using a top-down view. This suggests that a top-down view should be included in recording setups for automated GMA research.
- Abstract(参考訳): 本研究は,GMA(ビデオベース総合運動評価)の汎用的および幼児向け推定器の性能と,GMAとトップダウンの視界における従来の対角的視界の最適記録に対する視角の選択を比較した。
乳児の自発運動機能の75記録から4500の注釈付きビデオフレームを4週間から26週間使用した。
GMA関連環境で、どのポーズ推定方法とカメラアングルが幼児に最適なポーズ推定精度をもたらすかを決定するために、人間のアノテーションと正しいキーポイント(PCK)の比率を計算して比較した。
以上の結果から,成人のViTPoseを訓練する上で,最も優れた行動モデルが幼児の行動に有効であることが示唆された。
幼児データセット上の一般的なポーズ推定値に対して、幼児の目的推定値を使用することによる改善は見つからない。
しかし、データ上でジェネリックモデルを再トレーニングする場合、ポーズ推定精度が大幅に向上する。
トップダウンビューから得られるポーズ推定精度は、特にヒップキーポイントの検出において、対角ビューから得られたポーズ推定精度よりも著しく優れている。
また,乳児のポーズ推定装置を他の乳幼児のデータセットに限定した一般化能力を示し,乳幼児のポーズ推定装置を選択し,訓練を受けていない幼児のデータセットに使用する場合には注意が必要であることを示唆した。
標準GMA法は対角ビューを用いて評価を行うが、ポーズ推定精度はトップダウンビューを用いて大幅に向上する。
これは、自動GMA研究のための記録設定にトップダウンビューを含めるべきであることを示唆している。
関連論文リスト
- Advancing Newborn Care: Precise Birth Time Detection Using AI-Driven Thermal Imaging with Adaptive Normalization [1.101731711817642]
本稿では,人工知能(AI)とサーマルイメージングの融合について検討し,第1次AI駆動型バース検出器の開発について述べる。
まず,ガウス混合モデル(GMM)に基づく適応正規化手法を提案し,温度変動に関する問題を緩和する。
熱フレーム内での新生児の検出において、88.1%の精度と89.3%のリコールが報告されている。
論文 参考訳(メタデータ) (2024-10-14T13:20:51Z) - SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPoseは、カメラ・トゥ・ワールドおよびオブジェクト・トゥ・カメラシナリオにおける2ビュー相対ポーズ推定のためのスパースキーポイントベースのフレームワークである。
精度と速度の点で最先端の手法と比較して、競争力や優れた性能を達成する。
さまざまな画像サイズやカメラ固有の機能に対して堅牢であり、低コンピューティングリソースでデプロイすることができる。
論文 参考訳(メタデータ) (2024-07-11T05:46:35Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
新型コロナウイルス(COVID-19)の世界的なパンデミックの出現に伴い、超音波画像を完全に自動化する必要がある。
本稿では,学習型コンピュータビジョン技術を取り入れた,視覚に基づくデータ駆動方式を提案する。
本手法は、プローブ位置決めのための15.52mm(9.47mm)、プローブ方位のための4.32(3.69deg)の精度を達成し、全走査目標に対する誤差閾値25mm以下で成功率を80%以上とした。
論文 参考訳(メタデータ) (2022-12-15T14:34:12Z) - Bottom-Up 2D Pose Estimation via Dual Anatomical Centers for Small-Scale
Persons [75.86463396561744]
マルチパーソン2Dポーズ推定では、ボトムアップ手法は同時にすべての人のポーズを予測する。
本手法は,バウンディングボックス精度を38.4%改善し,バウンディングボックスリコールを39.1%改善した。
ヒトのポーズAP評価では,COCOテストデフセット上で新しいSOTA(71.0 AP)を単一スケールテストで達成する。
論文 参考訳(メタデータ) (2022-08-25T10:09:10Z) - AggPose: Deep Aggregation Vision Transformer for Infant Pose Estimation [6.9000851935487075]
幼児のポーズデータセットと人間のポーズ推定のためのDeep Aggregation Vision Transformerを提案する。
AggPoseは、畳み込み操作を使わずに、早く訓練されたフルトランスフォーマーフレームワークである。
AggPose は,様々な解像度のマルチスケール特徴を効果的に学習し,幼児のポーズ推定の性能を大幅に向上できることを示した。
論文 参考訳(メタデータ) (2022-05-11T05:34:14Z) - Enabling faster and more reliable sonographic assessment of gestational
age through machine learning [1.3238745915345225]
胎児超音波は出生前治療の不可欠な部分であり、妊娠年齢(GA)を推定するために用いられる。
我々は,標準平面画像を用いた画像モデル,フライトビデオを用いたビデオモデル,アンサンブルモデル(画像とビデオの組み合わせ)の3つのAIモデルを開発した。
これら3種は, 専門ソノグラフィーによる標準胎児バイオメトリに基づくGA推定よりも統計的に優れていた。
論文 参考訳(メタデータ) (2022-03-22T17:15:56Z) - Invariant Representation Learning for Infant Pose Estimation with Small
Data [14.91506452479778]
合成乳児ポーズと合成乳幼児ポーズとを併用したハイブリッド合成乳幼児ポーズデータセットを作成した。
我々は,SyRIPデータセットでトレーニングしたモデルと同一ネットワーク構造を用いたアブレーション調査を行い,他の公立幼児ポーズデータセットでトレーニングしたモデルよりも顕著に改善したことを示した。
最新のDarkPoseモデルを用いた幼児のポーズ推定では、平均的精度(mAP)は93.6である。
論文 参考訳(メタデータ) (2020-10-13T01:10:14Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
画像のみから視線を推定することは、観察不可能な人固有の要因のために難しい課題である。
本稿では,これらの意味的関係と時間的関係を明確に学習することを目的とした,新しいデータセットとアタッチメント手法を提案する。
視覚刺激からの情報と視線画像の融合が,文献に記録された人物と同じような性能を達成することにつながることを実証した。
論文 参考訳(メタデータ) (2020-07-26T12:39:15Z) - Bottom-Up Human Pose Estimation by Ranking Heatmap-Guided Adaptive
Keypoint Estimates [76.51095823248104]
キーポイント検出とグループ化(キーポイント回帰)性能を改善するために,これまでにほとんど,あるいはまったく研究されていないいくつかのスキームを提案する。
まず,画素単位のキーポイントレグレッションに対して,キーポイントのリグレッションを改善するために分離する代わりに,キーポイントのヒートマップを利用する。
第2に、スケールと向きの分散を扱うための適応表現を学習するために、画素単位の空間変換器ネットワークを採用する。
第3に,真のポーズとなる確率の高い推定ポーズを促進するために,結合形状と熱値評価手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T01:14:59Z) - Preterm infants' pose estimation with spatio-temporal features [7.054093620465401]
本稿では,手足検出・追跡における短期的特徴の活用について紹介する。
手足位置推定の実際の臨床実践で得られた深度ビデオを用いた最初の研究である。
論文 参考訳(メタデータ) (2020-05-08T09:51:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。