論文の概要: An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction
- arxiv url: http://arxiv.org/abs/2305.17156v1
- Date: Fri, 26 May 2023 16:40:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 23:21:37.339478
- Title: An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction
- Title(参考訳): 胎児健康予測のための異なるハイパーパラメータチューニング機械学習アルゴリズムを用いた改良モデル
- Authors: Md. Simul Hasan Talukder, Sharmin Akter
- Abstract要約: 本研究では,胎児の健康状態を予測するために,Support Vector MachineとExtraTreesのアンサンブルと呼ばれる頑健なアンサンブルモデルを提案する。
提案したETSEモデルは、100%精度、100%リコール、100%F1スコア、99.66%精度で他のモデルより優れていた。
- 参考スコア(独自算出の注目度): 1.332560004325655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fetal health is a critical concern during pregnancy as it can impact the
well-being of both the mother and the baby. Regular monitoring and timely
interventions are necessary to ensure the best possible outcomes. While there
are various methods to monitor fetal health in the mother's womb, the use of
artificial intelligence (AI) can improve the accuracy, efficiency, and speed of
diagnosis. In this study, we propose a robust ensemble model called ensemble of
tuned Support Vector Machine and ExtraTrees (ETSE) for predicting fetal health.
Initially, we employed various data preprocessing techniques such as outlier
rejection, missing value imputation, data standardization, and data sampling.
Then, seven machine learning (ML) classifiers including Support Vector Machine
(SVM), XGBoost (XGB), Light Gradient Boosting Machine (LGBM), Decision Tree
(DT), Random Forest (RF), ExtraTrees (ET), and K-Neighbors were implemented.
These models were evaluated and then optimized by hyperparameter tuning using
the grid search technique. Finally, we analyzed the performance of our proposed
ETSE model. The performance analysis of each model revealed that our proposed
ETSE model outperformed the other models with 100% precision, 100% recall, 100%
F1-score, and 99.66% accuracy. This indicates that the ETSE model can
effectively predict fetal health, which can aid in timely interventions and
improve outcomes for both the mother and the baby.
- Abstract(参考訳): 妊娠中の胎児の健康は、母親と赤ちゃんの健康に影響を及ぼす可能性があるため、重要な問題である。
最良の結果を保証するためには、定期的な監視とタイムリーな介入が必要です。
母親の子宮の胎児の健康をモニタリングする様々な方法があるが、人工知能(AI)の使用は、精度、効率、診断速度を改善することができる。
本研究では,胎児の健康状態を予測するために,調整支援ベクトルマシンとETSEのアンサンブルと呼ばれる頑健なアンサンブルモデルを提案する。
当初は,異常拒否,値インプテーションの欠如,データの標準化,データサンプリングなど,さまざまなデータ前処理手法を採用していました。
次に,SVM(Support Vector Machine),XGBoost(XGB),Light Gradient Boosting Machine(LGBM),Decision Tree(DT),Random Forest(RF),ExtraTrees(ET),K-Neighborsの7つの機械学習(ML)分類器を実装した。
これらのモデルをグリッドサーチ手法を用いてハイパーパラメータチューニングにより評価し,最適化した。
最後に,提案するETSEモデルの性能解析を行った。
各モデルの性能解析の結果,提案したETSEモデルは,100%精度,100%リコール,100%F1スコア,99.66%精度で他のモデルよりも優れていた。
これは、etseモデルが胎児の健康を効果的に予測し、母親と赤ちゃんの両方のタイムリーな介入を助け、結果を改善できることを示している。
関連論文リスト
- Efficient Feature Extraction Using Light-Weight CNN Attention-Based Deep Learning Architectures for Ultrasound Fetal Plane Classification [3.998431476275487]
本稿では,最大のベンチマークデータセットを分類するために,軽量な人工知能アーキテクチャを提案する。
アプローチは、ImageNet1kで事前トレーニングされた軽量のEfficientNet機能抽出バックボーンから微調整される。
本手法は,特徴を洗練するためのアテンション機構と3層パーセプトロンを組み込んだもので,トップ1の96.25%,トップ2の99.80%,F1スコアの0.9576で優れた性能を実現している。
論文 参考訳(メタデータ) (2024-10-22T20:02:38Z) - Use of What-if Scenarios to Help Explain Artificial Intelligence Models for Neonatal Health [6.102406188211489]
部分的リスクの早期検出は、介入によって脳性麻痺などの有害な労働結果の予防または軽減を可能にする。
新生児健康のモデリングと説明のためのAI(Artificial Intelligence)を提案する(AIMEN)。
母性、胎児、産科、産科のリスクファクターから有害な労働結果を予測するだけでなく、その予測の背後にあるモデルの推論も提供する。
論文 参考訳(メタデータ) (2024-10-12T20:21:00Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
5種類の機械学習手法の分類精度,精度,リコール,F-1スコアを評価し,比較した。
XGBoostは97%という最高のモデル精度を達成した。
論文 参考訳(メタデータ) (2024-04-06T17:23:21Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse
Pre-Processing Techniques and Machine Learning Models [0.0]
脳波データを用いたてんかん発作予測のための5つの機械学習モデルの比較分析を行った。
本分析の結果は,各モデルの性能を精度で示すものである。
ETモデルは99.29%の精度で最高の性能を示した。
論文 参考訳(メタデータ) (2023-08-06T08:50:08Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。