ZEBRA: Zero-Shot Example-Based Retrieval Augmentation for Commonsense Question Answering
- URL: http://arxiv.org/abs/2410.05077v1
- Date: Mon, 7 Oct 2024 14:31:43 GMT
- Title: ZEBRA: Zero-Shot Example-Based Retrieval Augmentation for Commonsense Question Answering
- Authors: Francesco Maria Molfese, Simone Conia, Riccardo Orlando, Roberto Navigli,
- Abstract summary: ZEBRA is a zero-shot question answering framework that combines retrieval, case-based reasoning and introspection.
Given an input question, ZEBRA retrieves relevant question-knowledge pairs from a knowledge base and generates new knowledge by reasoning over the relationships in these pairs.
This generated knowledge is then used to answer the input question, improving the model's performance and interpretability.
- Score: 46.04261413492061
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current Large Language Models (LLMs) have shown strong reasoning capabilities in commonsense question answering benchmarks, but the process underlying their success remains largely opaque. As a consequence, recent approaches have equipped LLMs with mechanisms for knowledge retrieval, reasoning and introspection, not only to improve their capabilities but also to enhance the interpretability of their outputs. However, these methods require additional training, hand-crafted templates or human-written explanations. To address these issues, we introduce ZEBRA, a zero-shot question answering framework that combines retrieval, case-based reasoning and introspection and dispenses with the need for additional training of the LLM. Given an input question, ZEBRA retrieves relevant question-knowledge pairs from a knowledge base and generates new knowledge by reasoning over the relationships in these pairs. This generated knowledge is then used to answer the input question, improving the model's performance and interpretability. We evaluate our approach across 8 well-established commonsense reasoning benchmarks, demonstrating that ZEBRA consistently outperforms strong LLMs and previous knowledge integration approaches, achieving an average accuracy improvement of up to 4.5 points.
Related papers
- LINKED: Eliciting, Filtering and Integrating Knowledge in Large Language Model for Commonsense Reasoning [21.12539851761666]
Large language models (LLMs) sometimes demonstrate poor performance on knowledge-intensive tasks.
We propose a novel method named eliciting, filtering and integrating knowledge in large language model (LINKED)
With our comprehensive experiments on two complex commonsense reasoning benchmarks, our method outperforms SOTA baselines (up to 9.0% improvement of accuracy)
arXiv Detail & Related papers (2024-10-12T14:12:22Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering [33.89497991289916]
We propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner.
We conduct experiments using various Large Language Models (LLMs) across several Knowledge Graph Question Answering (KGQA) benchmarks.
arXiv Detail & Related papers (2024-09-29T16:08:45Z) - On the Role of Long-tail Knowledge in Retrieval Augmented Large Language Models [33.08049246893537]
Retrieval augmented generation (RAG) exhibits outstanding performance in promoting the knowledge capabilities of large language models (LLMs)
We propose a simple but effective long-tail knowledge detection method for LLMs.
Our method achieves over 4x speedup in average inference time and consistent performance improvement in downstream tasks.
arXiv Detail & Related papers (2024-06-24T07:17:59Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
We propose a simple yet effective framework to enhance open-domain question answering (ODQA) with large language models (LLMs)
SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval (SuRe)
Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches.
arXiv Detail & Related papers (2024-04-17T01:15:54Z) - Merging Generated and Retrieved Knowledge for Open-Domain QA [72.42262579925911]
COMBO is a compatibility-Oriented knowledge Merging for Better Open-domain QA framework.
We show that COMBO outperforms competitive baselines on three out of four tested open-domain QA benchmarks.
arXiv Detail & Related papers (2023-10-22T19:37:06Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.