論文の概要: Towards a Modern and Lightweight Rendering Engine for Dynamic Robotic Simulations
- arxiv url: http://arxiv.org/abs/2410.05095v1
- Date: Mon, 7 Oct 2024 14:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 00:28:18.642960
- Title: Towards a Modern and Lightweight Rendering Engine for Dynamic Robotic Simulations
- Title(参考訳): 動的ロボットシミュレーションのための現代軽量レンダリングエンジンを目指して
- Authors: Christopher John Allison, Haoying Zhou, Adnan Munawar, Peter Kazanzides, Juan Antonio Barragan,
- Abstract要約: 本稿では,VulkanグラフィックスAPIをサポートするパフォーマンス重視の軽量レンダリングエンジンを提案する。
エンジンはAMBF(Asynchronous Multi-Body Framework)のレガシーレンダリングパイプラインを近代化するために設計されている。
実験によると、エンジンは2ミリ秒以内のGPU計算時間を維持しながら、700万以上の三角形でシミュレーションされたシーンをレンダリングできる。
- 参考スコア(独自算出の注目度): 4.226502078427161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactive dynamic simulators are an accelerator for developing novel robotic control algorithms and complex systems involving humans and robots. In user training and synthetic data generation applications, a high-fidelity visualization of the simulation is essential. Visual fidelity is dependent on the quality of the computer graphics algorithms used to render the simulated scene. Furthermore, the rendering algorithms must be implemented on the graphics processing unit (GPU) to achieve real-time performance, requiring the use of a graphics application programming interface (API). This paper presents a performance-focused and lightweight rendering engine supporting the Vulkan graphics API. The engine is designed to modernize the legacy rendering pipeline of Asynchronous Multi-Body Framework (AMBF), a dynamic simulation framework used extensively for interactive robotics simulation development. This new rendering engine implements graphical features such as physically based rendering (PBR), anti-aliasing, and ray-traced shadows, significantly improving the image quality of AMBF. Computational experiments show that the engine can render a simulated scene with over seven million triangles while maintaining GPU computation times within two milliseconds.
- Abstract(参考訳): インタラクティブ・ダイナミック・シミュレーターは、人間とロボットを含む新しいロボット制御アルゴリズムと複雑なシステムを開発するためのアクセラレーターである。
ユーザトレーニングおよび合成データ生成アプリケーションでは、シミュレーションの高忠実度可視化が不可欠である。
視覚的忠実度は、シミュレーションシーンのレンダリングに使用されるコンピュータグラフィックスアルゴリズムの品質に依存する。
さらに、レンダリングアルゴリズムはグラフィックス処理ユニット(GPU)に実装され、リアルタイムのパフォーマンスを実現し、グラフィックスアプリケーションプログラミングインタフェース(API)を使用する必要がある。
本稿では,VulkanグラフィックスAPIをサポートするパフォーマンス重視の軽量レンダリングエンジンを提案する。
このエンジンはAMBF(Asynchronous Multi-Body Framework)のレガシーレンダリングパイプラインを近代化するように設計されている。
この新しいレンダリングエンジンは、物理ベースレンダリング(PBR)、アンチエイリアス、レイトレーシングシャドーなどのグラフィカルな機能を実装し、ABBFの画質を大幅に向上させる。
計算実験により、エンジンは2ミリ秒以内のGPU計算時間を維持しながら、700万以上の三角形でシミュレーションされたシーンをレンダリングできることが示されている。
関連論文リスト
- Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation [62.5805866419814]
Vid2Simは、ニューラル3Dシーンの再構築とシミュレーションのためのスケーラブルで費用効率のよいReal2simパイプラインを通じてsim2realギャップをブリッジする新しいフレームワークである。
実験により、Vid2Simはデジタル双生児と現実世界の都市ナビゲーションの性能を31.2%、成功率68.3%で大幅に改善することが示された。
論文 参考訳(メタデータ) (2025-01-12T03:01:15Z) - ManiSkill3: GPU Parallelized Robotics Simulation and Rendering for Generalizable Embodied AI [27.00155119759743]
ManiSkill3は、汎用的な操作をターゲットとしたコンタクトリッチな物理を備えた、最先端のGPU並列化ロボットシミュレータである。
ManiSkill3は、シミュレーション+レンダリング、異種シミュレーション、ポイントクラウド/ボクセルビジュアル入力など、多くの面でGPU並列化をサポートしている。
論文 参考訳(メタデータ) (2024-10-01T06:10:39Z) - FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces [21.946327323788275]
動的顔の3Dレンダリングは難しい問題である。
本稿では,アクターの動的顔パフォーマンスの高品質なレンダリングを可能にする新しい表現を提案する。
論文 参考訳(メタデータ) (2024-04-22T00:44:13Z) - EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction [53.28220984270622]
3次元再構成法はリアルタイムに3次元整合性のある高忠実度結果を生成する。
提案手法は,合成と実世界の両方のデータセット上で,高品質な外観と正確なメッシュを再構築することができる。
我々の方法は1つのGPUを使ってたった1~2時間でトレーニングでき、40FPS(Frames per second)以上のモバイルデバイス上で実行することができる。
論文 参考訳(メタデータ) (2023-11-16T11:30:56Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Learning from synthetic data generated with GRADE [0.6982738885923204]
本稿では,ロボット工学研究のための現実的なアニメーション動的環境(GRADE)を作成するためのフレームワークを提案する。
GRADEは、完全なシミュレーション制御、ROS統合、現実物理学をサポートし、高い視覚的忠実度画像と地上真実データを生成するエンジン内にある。
合成データのみを用いてトレーニングしても、同一のアプリケーション領域における実世界の画像によく当てはまることを示す。
論文 参考訳(メタデータ) (2023-05-07T14:13:04Z) - Large Batch Simulation for Deep Reinforcement Learning [101.01408262583378]
我々は,視覚複雑な3次元環境における深層強化学習に基づく学習を,事前作業よりも2桁高速化する。
単一のGPUマシンで1秒間に19,000フレーム以上の経験と最大72,000フレーム/秒のエンドツーエンドのトレーニング速度を実現します。
バッチシミュレーションと性能最適化を組み合わせることで、1つのGPU上の複雑な3D環境において、従来の最先端システムでトレーニングされたエージェントの精度の97%から97%まで、ポイントナビゲーションエージェントをトレーニングできることを実証する。
論文 参考訳(メタデータ) (2021-03-12T00:22:50Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
GeoSimは、新しい都市の運転シーンを合成するジオメトリ認識の画像合成プロセスです。
まず、センサーデータからリアルな形状と外観の両方を備えた多様な3Dオブジェクトのバンクを構築します。
得られた合成画像は、フォトリアリズム、トラフィック認識、幾何学的一貫性があり、画像シミュレーションが複雑なユースケースにスケールできる。
論文 参考訳(メタデータ) (2021-01-16T23:00:33Z) - Photorealism in Driving Simulations: Blending Generative Adversarial
Image Synthesis with Rendering [0.0]
我々は、運転シミュレーションの視覚的忠実度を改善するために、ハイブリッドな生成型ニューラルネットワークパイプラインを導入する。
テクスチャのない単純なオブジェクトモデルからなる3次元シーンから2次元のセマンティック画像を生成する。
これらのセマンティックイメージは、現実の運転シーンで訓練された最先端のジェネレーティブ・アドリア・ネットワーク(GAN)を用いて、フォトリアリスティックなRGBイメージに変換される。
論文 参考訳(メタデータ) (2020-07-31T03:25:17Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。