論文の概要: FIRE-3DV: Framework-Independent Rendering Engine for 3D Graphics using Vulkan
- arxiv url: http://arxiv.org/abs/2410.05095v2
- Date: Fri, 13 Dec 2024 15:10:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:37.841246
- Title: FIRE-3DV: Framework-Independent Rendering Engine for 3D Graphics using Vulkan
- Title(参考訳): FIRE-3DV:Vulkanを用いた3Dグラフィックのためのフレームワークに依存しないレンダリングエンジン
- Authors: Christopher John Allison, Haoying Zhou, Adnan Munawar, Peter Kazanzides, Juan Antonio Barragan,
- Abstract要約: 本稿では,最新のVulkanグラフィックスAPIをサポートする,パフォーマンスを重視した軽量レンダリングエンジンを提案する。
我々のエンジンは、動的シミュレーションフレームワークであるAMBF(Asynchronous Multi-Body Framework)のレガシーレンダリングパイプラインの近代化に使用されている。
実験によると、エンジンは2ミリ秒以内のGPU計算時間を維持しながら、700万以上の三角形でシミュレーションされたシーンをレンダリングできる。
- 参考スコア(独自算出の注目度): 4.226502078427161
- License:
- Abstract: Interactive dynamic simulators are an accelerator for developing novel robotic control algorithms and complex systems involving humans and robots. In user training and synthetic data generation applications, high-fidelity visualizations from the simulation are essential. Yet, robotic simulators often limit their rendering algorithms to preserve real-time interaction with the simulation. Advancements in Graphics Processing Units (GPU) enable improved visualization without compromising performance. However, these advancements cannot be fully leveraged in simulation frameworks that use legacy graphics application programming interfaces (API) to interface with the GPU. This paper presents a performance-focused and lightweight rendering engine supporting the modern Vulkan graphics API that can be easily integrated with other simulation frameworks to enhance visualizations. To illustrate the proposed method, our engine is used to modernize the legacy rendering pipeline of the Asynchronous Multi-Body Framework (AMBF), a dynamic simulation framework used extensively for interactive robotics simulation development. This new rendering engine implements graphical features such as physically based rendering (PBR), anti-aliasing, and ray-traced shadows, significantly improving the image fidelity of AMBF. Computational experiments show that the engine can render a simulated scene with over seven million triangles while maintaining GPU computation times within two milliseconds.
- Abstract(参考訳): インタラクティブ・ダイナミック・シミュレーターは、人間とロボットを含む新しいロボット制御アルゴリズムと複雑なシステムを開発するためのアクセラレーターである。
ユーザトレーニングや合成データ生成アプリケーションでは,シミュレーションによる高忠実度可視化が不可欠である。
しかし、ロボットシミュレーターは、シミュレーションとのリアルタイムインタラクションを維持するためにレンダリングアルゴリズムを制限することが多い。
GPU(Graphics Processing Units)の進歩は、パフォーマンスを損なうことなく、視覚化の改善を可能にする。
しかし、これらの進歩は、GPUとのインターフェースにレガシーグラフィックスアプリケーションプログラミングインターフェース(API)を使用するシミュレーションフレームワークで完全に活用することはできない。
本稿では,最新のVulkanグラフィックスAPIをサポートする,パフォーマンスを重視した軽量なレンダリングエンジンを提案する。
提案手法を説明するために,対話型ロボットシミュレーション開発に広く用いられている動的シミュレーションフレームワークであるAMBF(Asynchronous Multi-Body Framework)のレガシレンダリングパイプラインを近代化するために,本エンジンを用いた。
この新しいレンダリングエンジンは、物理ベースレンダリング(PBR)、アンチエイリアス、レイトレーシングシャドーなどのグラフィカルな機能を実装し、ABBFの画質を大幅に向上させる。
計算実験により、エンジンは2ミリ秒以内のGPU計算時間を維持しながら、700万以上の三角形でシミュレーションされたシーンをレンダリングできることが示されている。
関連論文リスト
- Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation [62.5805866419814]
Vid2Simは、ニューラル3Dシーンの再構築とシミュレーションのためのスケーラブルで費用効率のよいReal2simパイプラインを通じてsim2realギャップをブリッジする新しいフレームワークである。
実験により、Vid2Simはデジタル双生児と現実世界の都市ナビゲーションの性能を31.2%、成功率68.3%で大幅に改善することが示された。
論文 参考訳(メタデータ) (2025-01-12T03:01:15Z) - ManiSkill3: GPU Parallelized Robotics Simulation and Rendering for Generalizable Embodied AI [27.00155119759743]
ManiSkill3は、汎用的な操作をターゲットとしたコンタクトリッチな物理を備えた、最先端のGPU並列化ロボットシミュレータである。
ManiSkill3は、シミュレーション+レンダリング、異種シミュレーション、ポイントクラウド/ボクセルビジュアル入力など、多くの面でGPU並列化をサポートしている。
論文 参考訳(メタデータ) (2024-10-01T06:10:39Z) - FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic Faces [21.946327323788275]
動的顔の3Dレンダリングは難しい問題である。
本稿では,アクターの動的顔パフォーマンスの高品質なレンダリングを可能にする新しい表現を提案する。
論文 参考訳(メタデータ) (2024-04-22T00:44:13Z) - EvaSurf: Efficient View-Aware Implicit Textured Surface Reconstruction [53.28220984270622]
3次元再構成法はリアルタイムに3次元整合性のある高忠実度結果を生成する。
提案手法は,合成と実世界の両方のデータセット上で,高品質な外観と正確なメッシュを再構築することができる。
我々の方法は1つのGPUを使ってたった1~2時間でトレーニングでき、40FPS(Frames per second)以上のモバイルデバイス上で実行することができる。
論文 参考訳(メタデータ) (2023-11-16T11:30:56Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Learning from synthetic data generated with GRADE [0.6982738885923204]
本稿では,ロボット工学研究のための現実的なアニメーション動的環境(GRADE)を作成するためのフレームワークを提案する。
GRADEは、完全なシミュレーション制御、ROS統合、現実物理学をサポートし、高い視覚的忠実度画像と地上真実データを生成するエンジン内にある。
合成データのみを用いてトレーニングしても、同一のアプリケーション領域における実世界の画像によく当てはまることを示す。
論文 参考訳(メタデータ) (2023-05-07T14:13:04Z) - Large Batch Simulation for Deep Reinforcement Learning [101.01408262583378]
我々は,視覚複雑な3次元環境における深層強化学習に基づく学習を,事前作業よりも2桁高速化する。
単一のGPUマシンで1秒間に19,000フレーム以上の経験と最大72,000フレーム/秒のエンドツーエンドのトレーニング速度を実現します。
バッチシミュレーションと性能最適化を組み合わせることで、1つのGPU上の複雑な3D環境において、従来の最先端システムでトレーニングされたエージェントの精度の97%から97%まで、ポイントナビゲーションエージェントをトレーニングできることを実証する。
論文 参考訳(メタデータ) (2021-03-12T00:22:50Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
GeoSimは、新しい都市の運転シーンを合成するジオメトリ認識の画像合成プロセスです。
まず、センサーデータからリアルな形状と外観の両方を備えた多様な3Dオブジェクトのバンクを構築します。
得られた合成画像は、フォトリアリズム、トラフィック認識、幾何学的一貫性があり、画像シミュレーションが複雑なユースケースにスケールできる。
論文 参考訳(メタデータ) (2021-01-16T23:00:33Z) - Photorealism in Driving Simulations: Blending Generative Adversarial
Image Synthesis with Rendering [0.0]
我々は、運転シミュレーションの視覚的忠実度を改善するために、ハイブリッドな生成型ニューラルネットワークパイプラインを導入する。
テクスチャのない単純なオブジェクトモデルからなる3次元シーンから2次元のセマンティック画像を生成する。
これらのセマンティックイメージは、現実の運転シーンで訓練された最先端のジェネレーティブ・アドリア・ネットワーク(GAN)を用いて、フォトリアリスティックなRGBイメージに変換される。
論文 参考訳(メタデータ) (2020-07-31T03:25:17Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。