Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization
- URL: http://arxiv.org/abs/2410.05114v1
- Date: Mon, 7 Oct 2024 15:09:50 GMT
- Title: Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization
- Authors: Rohan Reddy Mekala, Frederik Pahde, Simon Baur, Sneha Chandrashekar, Madeline Diep, Markus Wenzel, Eric L. Wisotzky, Galip Ümit Yolcu, Sebastian Lapuschkin, Jackie Ma, Peter Eisert, Mikael Lindvall, Adam Porter, Wojciech Samek,
- Abstract summary: We propose an innovative unsupervised augmentation solution that harnesses Generative Adversarial Network (GAN) based models.
We created synthetic images to incorporate the semantic variations and augmented the training data with these images.
We were able to increase the performance of machine learning models and set a new benchmark amongst non-ensemble based models in skin lesion classification.
- Score: 12.753792457271953
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the realm of dermatological diagnoses, where the analysis of dermatoscopic and microscopic skin lesion images is pivotal for the accurate and early detection of various medical conditions, the costs associated with creating diverse and high-quality annotated datasets have hampered the accuracy and generalizability of machine learning models. We propose an innovative unsupervised augmentation solution that harnesses Generative Adversarial Network (GAN) based models and associated techniques over their latent space to generate controlled semiautomatically-discovered semantic variations in dermatoscopic images. We created synthetic images to incorporate the semantic variations and augmented the training data with these images. With this approach, we were able to increase the performance of machine learning models and set a new benchmark amongst non-ensemble based models in skin lesion classification on the HAM10000 dataset; and used the observed analytics and generated models for detailed studies on model explainability, affirming the effectiveness of our solution.
Related papers
- Deep Generative Models for 3D Medical Image Synthesis [1.931185411277237]
Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images.
This chapter explores various deep generative models for 3D medical image synthesis.
arXiv Detail & Related papers (2024-10-23T08:33:23Z) - Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images [2.79604239303318]
We propose S-SYNTH, the first knowledge-based, adaptable open-source skin simulation framework.
We generate synthetic skin, 3D models and digitally rendered images using an anatomically inspired multi-layer, multi-representation skin and growing lesion model.
We show that results obtained using synthetic data follow similar comparative trends as real dermatologic images.
arXiv Detail & Related papers (2024-07-31T23:16:29Z) - Multi-Branch Generative Models for Multichannel Imaging with an Application to PET/CT Synergistic Reconstruction [42.95604565673447]
This paper presents a novel approach for learned synergistic reconstruction of medical images using multi-branch generative models.
We demonstrate the efficacy of our approach on both Modified National Institute of Standards and Technology (MNIST) and positron emission tomography (PET)/ computed tomography (CT) datasets.
arXiv Detail & Related papers (2024-04-12T18:21:08Z) - Boosting Dermatoscopic Lesion Segmentation via Diffusion Models with
Visual and Textual Prompts [27.222844687360823]
We adapt the latest advance in the generative model, with the added control flow using lesion-specific visual and textual prompts.
It can achieve a 9% increase in the SSIM image quality measure and an over 5% increase in Dice coefficients over the prior arts.
arXiv Detail & Related papers (2023-10-04T15:43:26Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.