論文の概要: AlphaRouter: Quantum Circuit Routing with Reinforcement Learning and Tree Search
- arxiv url: http://arxiv.org/abs/2410.05115v1
- Date: Mon, 7 Oct 2024 15:10:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 00:08:45.395655
- Title: AlphaRouter: Quantum Circuit Routing with Reinforcement Learning and Tree Search
- Title(参考訳): AlphaRouter:強化学習と木探索による量子回路ルーティング
- Authors: Wei Tang, Yiheng Duan, Yaroslav Kharkov, Rasool Fakoor, Eric Kessler, Yunong Shi,
- Abstract要約: 本稿では,モンテカルロ木探索(MCTS)と強化学習(RL)を統合するソリューションを提案する。
我々のルータはAlpha RLと呼ばれ、現在の最先端のルーティング手法より優れており、最大20%のルーティングオーバーヘッドで量子プログラムを生成する。
- 参考スコア(独自算出の注目度): 14.46041554295883
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computers have the potential to outperform classical computers in important tasks such as optimization and number factoring. They are characterized by limited connectivity, which necessitates the routing of their computational bits, known as qubits, to specific locations during program execution to carry out quantum operations. Traditionally, the NP-hard optimization problem of minimizing the routing overhead has been addressed through sub-optimal rule-based routing techniques with inherent human biases embedded within the cost function design. This paper introduces a solution that integrates Monte Carlo Tree Search (MCTS) with Reinforcement Learning (RL). Our RL-based router, called AlphaRouter, outperforms the current state-of-the-art routing methods and generates quantum programs with up to $20\%$ less routing overhead, thus significantly enhancing the overall efficiency and feasibility of quantum computing.
- Abstract(参考訳): 量子コンピュータは、最適化や数分解といった重要なタスクにおいて、古典的コンピュータより優れている可能性がある。
量子演算を実行するには、量子ビットと呼ばれる計算ビットをプログラム実行中の特定の場所にルーティングする必要がある。
伝統的に、ルーティングオーバーヘッドを最小限に抑えるNPハード最適化問題は、コスト関数設計に固有の人間のバイアスが埋め込まれた準最適ルールベースのルーティング技術によって解決されてきた。
本稿では,モンテカルロ木探索(MCTS)と強化学習(RL)を統合するソリューションを提案する。
我々のRLベースのルータであるAlphaRouterは、現在の最先端のルーティング手法より優れており、最大20\%のルーティングオーバーヘッドで量子プログラムを生成し、量子コンピューティングの全体的な効率と実現可能性を大幅に向上させる。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution [6.207327488572861]
分散量子コンピューティング(DQC)は、複数の量子プロセッサユニット(QPU)を相互接続することで利用可能な量子計算をスケールする手段を提供する。
この領域における鍵となる課題は、量子回路からQPU内の物理量子ビットへ論理量子ビットを効率的に割り当てることである。
従来のアプローチでは、ゲートテレポーテーションの一種である非ローカルなCNOT操作の実行に必要なベルペアの数を減らそうとしていた。
本稿では,量子回路を実行するネットワークコストを最小化するメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-09T16:03:41Z) - beSnake: A routing algorithm for scalable spin-qubit architectures [1.351147045576948]
本稿では,スケーラブルなスピンキュービットアーキテクチャにおける複雑なキュービットルーティング問題に対処するために設計された,新しいアルゴリズムであるbeSnakeを紹介する。
BeSnakeは、最大72%の量子ビット密度で、様々なトポロジと障害物として働く量子ビット位置によって生じる制約を効果的に管理する。
我々のシミュレーションは、1000ドル相当の量子ビットを持つランダム回路や実量子アルゴリズム上の既存のルーティングソリューションに対して、beSnakeの利点を実証している。
論文 参考訳(メタデータ) (2024-03-24T11:08:40Z) - Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors [1.3230570759583702]
本研究は,3つのプロセッサトポロジ間の通信オーバーヘッドの比較分析を行った。
通信と計算の比率、平均量子ビットホットスポット性、時間的バーストネスのパフォーマンス指標によると、正方形格子配置は量子コンピュータアーキテクチャーのスケールで好適である。
論文 参考訳(メタデータ) (2024-02-01T10:16:04Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
絡み合いルーティングは、2つの任意のノード間のリモート絡み合い接続を確立する。
量子ネットワークにおける複数のソース・デスティネーション(SD)ペアの忠実性を保証するために、精製可能な絡み合わせルーティング設計を提案する。
論文 参考訳(メタデータ) (2021-11-15T14:07:22Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Effective routing design for remote entanglement generation on quantum
networks [6.695045642641268]
量子メモリのような比較的限られた資源を持つ量子ネットワーク上での効率的な絡み合い生成は、ネットワークの機能を完全に実現するために不可欠である。
ソース終端局間の絡み合い発生の複数の要求に対する自動応答を可能にする効果的なルーティング方式を提案する。
接続要求毎に複数の接続経路が利用され、また、絡み合う浄化を行うことにより、各経路に対して絡み合う忠実度が確保される。
論文 参考訳(メタデータ) (2020-01-07T18:16:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。