ReasoningRank: Teaching Student Models to Rank through Reasoning-Based Knowledge Distillation
- URL: http://arxiv.org/abs/2410.05168v3
- Date: Sat, 30 Nov 2024 16:10:21 GMT
- Title: ReasoningRank: Teaching Student Models to Rank through Reasoning-Based Knowledge Distillation
- Authors: Yuelyu Ji, Zhuochun Li, Rui Meng, Daqing He,
- Abstract summary: We propose Reason-to-Rank (R2R), a novel open-source reranking approach that enhances transparency.
R2R generates two types of reasoning: direct relevance reasoning, which explains how a document addresses the query, and comparison reasoning, which justifies the relevance of one document over another.
Our student models are trained to generate meaningful reasoning and rerank documents, achieving competitive performance across multiple datasets.
- Score: 11.756344944226495
- License:
- Abstract: Reranking documents based on their relevance to a given query is a critical task in information retrieval. Traditional reranking methods often lack transparency and rely on proprietary models, hindering reproducibility and interpretability. We propose Reason-to-Rank (R2R), a novel open-source reranking approach that enhances transparency by generating two types of reasoning: direct relevance reasoning, which explains how a document addresses the query, and comparison reasoning, which justifies the relevance of one document over another. We leverage large language models (LLMs) as teacher models to generate these explanations and distill this knowledge into smaller, openly available student models. Our student models are trained to generate meaningful reasoning and rerank documents, achieving competitive performance across multiple datasets, including MSMARCO and BRIGHT. Experiments demonstrate that R2R not only improves reranking accuracy but also provides valuable insights into the decision-making process. By offering a structured and interpretable solution with openly accessible resources, R2R aims to bridge the gap between effectiveness and transparency in information retrieval, fostering reproducibility and further research in the field.
Related papers
- DOGR: Leveraging Document-Oriented Contrastive Learning in Generative Retrieval [10.770281363775148]
We propose a novel and general generative retrieval framework, namely Leveraging Document-Oriented Contrastive Learning in Generative Retrieval (DOGR)
It adopts a two-stage learning strategy that captures the relationship between queries and documents comprehensively through direct interactions.
Negative sampling methods and corresponding contrastive learning objectives are implemented to enhance the learning of semantic representations.
arXiv Detail & Related papers (2025-02-11T03:25:42Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation [43.50677378728461]
We propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn.
We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query.
Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences.
arXiv Detail & Related papers (2024-12-11T16:32:41Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - A Counterfactual Explanation Framework for Retrieval Models [4.562474301450839]
We use an optimization framework to solve the question of which words played a role in not being favored by a retrieval model for a particular query.
Our experiments show the effectiveness of our proposed approach in predicting counterfactuals for both statistical (e.g. BM25) and deep-learning-based models.
arXiv Detail & Related papers (2024-09-01T22:33:29Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Why So Gullible? Enhancing the Robustness of Retrieval-Augmented Models against Counterfactual Noise [14.38859858538404]
In a retrieved document set, even the "relevant" documents may contain misleading or incorrect information.
Our work investigates a more challenging scenario in which even the "relevant" documents may contain misleading or incorrect information.
We propose approaches for handling knowledge conflicts among retrieved documents by explicitly fine-tuning a discriminator or prompting GPT-3.5 to elicit its discriminative capability.
arXiv Detail & Related papers (2023-05-02T16:28:10Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
We study the effect of two main information sources in text: textual context and entity mentions (names)
We propose an entity-masked contrastive pre-training framework for relation extraction (RE)
Our framework can improve the effectiveness and robustness of neural models in different RE scenarios.
arXiv Detail & Related papers (2020-10-05T11:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.