SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe
- URL: http://arxiv.org/abs/2410.05248v1
- Date: Mon, 7 Oct 2024 17:52:21 GMT
- Title: SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe
- Authors: Yuxin Xiao, Shujian Zhang, Wenxuan Zhou, Marzyeh Ghassemi, Sanqiang Zhao,
- Abstract summary: We propose SFTMix, a novel recipe that elevates instruction-tuning performance beyond the conventional NTP paradigm.
Based on training dynamics, we argue that examples with different confidence levels should play distinct roles during the instruction-tuning process.
This approach enables SFTMix to significantly outperform NTP across a wide range of instruction-following and healthcare domain-specific SFT tasks.
- Score: 30.03925858123481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To induce desired behaviors in large language models (LLMs) for interaction-driven tasks, the instruction-tuning stage typically trains LLMs on instruction-response pairs using the next-token prediction (NTP) loss. Previous work aiming to improve instruction-tuning performance often emphasizes the need for higher-quality supervised fine-tuning (SFT) datasets, which typically involves expensive data filtering with proprietary LLMs or labor-intensive data generation by human annotators. However, these approaches do not fully leverage the datasets' intrinsic properties, resulting in high computational and labor costs, thereby limiting scalability and performance gains. In this paper, we propose SFTMix, a novel recipe that elevates instruction-tuning performance beyond the conventional NTP paradigm, without the need for well-curated datasets. Observing that LLMs exhibit uneven confidence across the semantic representation space, we argue that examples with different confidence levels should play distinct roles during the instruction-tuning process. Based on this insight, SFTMix leverages training dynamics to identify examples with varying confidence levels, then applies a Mixup-based regularization to mitigate overfitting on confident examples while propagating supervision signals to improve learning on relatively unconfident ones. This approach enables SFTMix to significantly outperform NTP across a wide range of instruction-following and healthcare domain-specific SFT tasks, demonstrating its adaptability to diverse LLM families and scalability to datasets of any size. Comprehensive ablation studies further verify the robustness of SFTMix's design choices, underscoring its versatility in consistently enhancing performance across different LLMs and datasets in broader natural language processing applications.
Related papers
- Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models [12.500777267361102]
We introduce a novel textbfpreference-textbforiented supervised textbffine-textbftuning approach, namely PoFT.
The intuition is to boost SFT by imposing a particular preference: textitfavoring the target model over aligned LLMs on the same SFT data.
PoFT achieves stable and consistent improvements over the SFT baselines across different training datasets and base models.
arXiv Detail & Related papers (2024-12-17T12:49:14Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - A Preference-driven Paradigm for Enhanced Translation with Large Language Models [33.51585908894444]
Large language models (LLMs) can achieve remarkable translation performance using only a small amount of parallel data.
SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references.
We propose a preference-based approach built upon the Plackett-Luce model to overcome this plateau.
arXiv Detail & Related papers (2024-04-17T11:52:47Z) - LaFFi: Leveraging Hybrid Natural Language Feedback for Fine-tuning
Language Models [14.087415157225715]
Fine-tuning Large Language Models (LLMs) adapts a trained model to specific downstream tasks.
Supervised Fine-Tuning (SFT) is a common approach, where an LLM is trained to produce desired answers.
This paper introduces an alternative to SFT called Natural Language Feedback for Finetuning LLMs (LaFFi)
arXiv Detail & Related papers (2023-12-31T21:18:16Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of supervised fine-tuning (SFT)
We also review the potential pitfalls of SFT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - An Adaptive Plug-and-Play Network for Few-Shot Learning [12.023266104119289]
Few-shot learning requires a model to classify new samples after learning from only a few samples.
Deep networks and complex metrics tend to induce overfitting, making it difficult to further improve the performance.
We propose plug-and-play model-adaptive resizer (MAR) and adaptive similarity metric (ASM) without any other losses.
arXiv Detail & Related papers (2023-02-18T13:25:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.