DVS: Blood cancer detection using novel CNN-based ensemble approach
- URL: http://arxiv.org/abs/2410.05272v1
- Date: Thu, 12 Sep 2024 09:16:24 GMT
- Title: DVS: Blood cancer detection using novel CNN-based ensemble approach
- Authors: Md Taimur Ahad, Israt Jahan Payel, Bo Song, Yan Li,
- Abstract summary: Blood cancer can only be diagnosed properly if it is detected early.
This study investigates the efficacy and suitability of modern Convolutional Neural Network (CNN) architectures for the detection and classification of blood malignancies.
The ensemble DVS model is the best for detecting and classifying blood cancers.
- Score: 7.13230591574577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blood cancer can only be diagnosed properly if it is detected early. Each year, more than 1.24 million new cases of blood cancer are reported worldwide. There are about 6,000 cancers worldwide due to this disease. The importance of cancer detection and classification has prompted researchers to evaluate Deep Convolutional Neural Networks for the purpose of classifying blood cancers. The objective of this research is to conduct an in-depth investigation of the efficacy and suitability of modern Convolutional Neural Network (CNN) architectures for the detection and classification of blood malignancies. The study focuses on investigating the potential of Deep Convolutional Neural Networks (D-CNNs), comprising not only the foundational CNN models but also those improved through transfer learning methods and incorporated into ensemble strategies, to detect diverse forms of blood cancer with a high degree of accuracy. This paper provides a comprehensive investigation into five deep learning architectures derived from CNNs. These models, namely VGG19, ResNet152v2, SEresNet152, ResNet101, and DenseNet201, integrate ensemble learning techniques with transfer learning strategies. A comparison of DenseNet201 (98.08%), VGG19 (96.94%), and SEresNet152 (90.93%) shows that DVS outperforms CNN. With transfer learning, DenseNet201 had 95.00% accuracy, VGG19 had 72.29%, and SEresNet152 had 94.16%. In the study, the ensemble DVS model achieved 98.76% accuracy. Based on our study, the ensemble DVS model is the best for detecting and classifying blood cancers.
Related papers
- A study on Deep Convolutional Neural Networks, Transfer Learning and Ensemble Model for Breast Cancer Detection [2.5748316361772963]
This study compares the performance of D-CNN, which includes the original CNN, transfer learning, and an ensemble model, in detecting breast cancer.
The ensemble model provides the highest detection and classification accuracy of 99.94% for breast cancer detection and classification.
The high accuracy in detecting and categorising breast cancer detection using CNN suggests that the CNN model is promising in breast cancer disease detection.
arXiv Detail & Related papers (2024-09-10T17:58:21Z) - A comprehensive study on Blood Cancer detection and classification using Convolutional Neural Network [6.648024246537002]
This study develops a novel ensemble model DIX to detect and classify blood cancer.
The statistical result suggests that DIX outperformed the original and transfer learning performance, providing an accuracy of 99.12%.
The high accuracy in detecting and categorization blood cancer detection using CNN suggests that the CNN model is promising in blood cancer disease detection.
arXiv Detail & Related papers (2024-09-10T17:53:47Z) - A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
Acute lymphoblastic leukaemia (ALL) is a blood malignancy that mainly affects adults and children.
This study looks into the use of deep learning, specifically Convolutional Neural Networks (CNNs) for the detection and classification of ALL.
With an 87% accuracy rate, the ResNet101 model produced the best results, closely followed by DenseNet121 and VGG19.
arXiv Detail & Related papers (2024-09-10T17:53:29Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - Comparative Analysis of Deep Learning Architectures for Breast Cancer
Diagnosis Using the BreaKHis Dataset [0.0]
In this study, we use and compare the performance of five well-known deep learning models for cancer classification.
The results placed the Xception model at the top, with an F1 score of 0.9 and an accuracy of 89%.
The F1 score for the Inception model was 87, while that for the InceptionResNet model was 86.
arXiv Detail & Related papers (2023-09-02T19:02:50Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.