Calibration of Vehicular Traffic Simulation Models by Local Optimization
- URL: http://arxiv.org/abs/2502.11585v1
- Date: Mon, 17 Feb 2025 09:17:01 GMT
- Title: Calibration of Vehicular Traffic Simulation Models by Local Optimization
- Authors: Davide Andrea Guastella, Alejandro Morales-Hernàndez, Bruno Cornelis, Gianluca Bontempi,
- Abstract summary: Calibrating simulation models using traffic count data is challenging because of complexity of environment, lack of data, and uncertainties in traffic dynamics.
This paper introduces a novel simulation-based traffic calibration technique.
We assess the proposed technique on a model of Brussels, Belgium, using data from real traffic monitoring devices.
- Score: 43.942239814508106
- License:
- Abstract: Simulation is a valuable tool for traffic management experts to assist them in refining and improving transportation systems and anticipating the impact of possible changes in the infrastructure network before their actual implementation. Calibrating simulation models using traffic count data is challenging because of the complexity of the environment, the lack of data, and the uncertainties in traffic dynamics. This paper introduces a novel stochastic simulation-based traffic calibration technique. The novelty of the proposed method is: (i) it performs local traffic calibration, (ii) it allows calibrating simulated traffic in large-scale environments, (iii) it requires only the traffic count data. The local approach enables decentralizing the calibration task to reach near real-time performance, enabling the fostering of digital twins. Using only traffic count data makes the proposed method generic so that it can be applied in different traffic scenarios at various scales (from neighborhood to region). We assess the proposed technique on a model of Brussels, Belgium, using data from real traffic monitoring devices. The proposed method has been implemented using the open-source traffic simulator SUMO. Experimental results show that the traffic model calibrated using the proposed method is on average 16% more accurate than those obtained by the state-of-the-art methods, using the same dataset. We also make available the output traffic model obtained from real data.
Related papers
- Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data [19.01488741469791]
We propose an efficient and robust low-rank model for precise oblique traffic speed state estimation.
The proposed method achieves up to 12% improvement in Root Mean Square Error (RMSE) in the TSE scenarios.
It runs more than 20 times faster than the state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-11-06T15:13:40Z) - Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - TransWorldNG: Traffic Simulation via Foundation Model [23.16553424318004]
We present TransWordNG, a traffic simulator that uses Data-driven algorithms and Graph Computing techniques to learn traffic dynamics from real data.
The results demonstrate that TransWorldNG can generate more realistic traffic patterns compared to traditional simulators.
arXiv Detail & Related papers (2023-05-25T05:49:30Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes [21.13555047611666]
We propose a kernel rotation re-parametrization scheme that transforms a standard isotropic GP kernel into an anisotropic kernel.
We also extend our approach to a multi-output GP, which allows for simultaneously estimating the traffic state for multiple lanes.
Considering current and future mixed traffic of connected vehicles (CVs) and human-driven vehicles (HVs), we experiment with the traffic state estimation (TSE) scheme from 5% to 50% available trajectories.
arXiv Detail & Related papers (2023-03-04T03:59:17Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Large-scale Analysis and Simulation of Traffic Flow using Markov Models [0.0]
A mathematically rigorous model that can be used for traffic analysis was proposed earlier by other researchers.
In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution.
We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory.
arXiv Detail & Related papers (2020-07-06T12:31:27Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
We show that a well trained neural network can learn traffic speed dynamics from time-space diagrams.
Our results show that with vehicle penetration probe levels as low as 5%, the proposed estimation method can provide a sound reconstruction of macroscopic traffic speeds.
arXiv Detail & Related papers (2020-01-21T12:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.