論文の概要: LLMs Are In-Context Reinforcement Learners
- arxiv url: http://arxiv.org/abs/2410.05362v1
- Date: Mon, 7 Oct 2024 17:45:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:07:22.206905
- Title: LLMs Are In-Context Reinforcement Learners
- Title(参考訳): LLMはコンテキスト強化学習者である
- Authors: Giovanni Monea, Antoine Bosselut, Kianté Brantley, Yoav Artzi,
- Abstract要約: 大規模言語モデル(LLM)は、コンテキスト内教師あり学習(ICL)を通じて新しいタスクを学習することができる。
この研究は、この能力が文脈内強化学習(ICRL)にまで拡張されるかどうかを研究する。
本稿では、テスト時間計算の増加と計算バウンド近似により、この欠陥に対処するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 30.192422586838997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) can learn new tasks through in-context supervised learning (i.e., ICL). This work studies if this ability extends to in-context reinforcement learning (ICRL), where models are not given gold labels in context, but only their past predictions and rewards. We show that a naive application of ICRL fails miserably, and identify the root cause as a fundamental deficiency at exploration, which leads to quick model degeneration. We propose an algorithm to address this deficiency by increasing test-time compute, as well as a compute-bound approximation. We use several challenging classification tasks to empirically show that our ICRL algorithms lead to effective learning from rewards alone, and analyze the characteristics of this ability and our methods. Overall, our results reveal remarkable ICRL abilities in LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コンテキスト内教師あり学習(ICL)を通じて新しいタスクを学習することができる。
この研究は、この能力が文脈内強化学習(ICRL)にまで拡張されるかどうかを研究する。
そこで本研究では, ICRLの根本原因を探索における根本欠損と同定し, 迅速なモデル変性をもたらすことを示す。
本稿では,テスト時間計算の増加と計算バウンド近似により,この問題に対処するアルゴリズムを提案する。
我々は、ICRLアルゴリズムが報酬のみから効果的な学習につながることを実証的に示すために、いくつかの挑戦的な分類タスクを使用し、この能力と方法の特徴を分析する。
総じて, LLMのICRL能力は顕著であった。
関連論文リスト
- Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse RL [7.988692259455583]
Reinforcement Learning from Human Feedbackで訓練された大規模言語モデル(LLM)は、目覚ましい能力を示しているが、その基盤となる報酬関数や意思決定プロセスは不透明である。
本稿では, 逆強化学習(IRL)を用いて暗黙の報酬関数を復元することにより, LLMを解釈する新しい手法を提案する。
我々は,ヒトの嗜好を予測する上で,最大80.40%の精度を達成できる報酬モデルを抽出し,様々な大きさの毒性アライメントLDMについて実験を行った。
論文 参考訳(メタデータ) (2024-10-16T12:14:25Z) - ICLEval: Evaluating In-Context Learning Ability of Large Language Models [68.7494310749199]
In-Context Learning (ICL) は大規模言語モデル(LLM)の重要な能力であり、相互接続された入力の理解と推論を可能にする。
既存の評価フレームワークは主に言語能力と知識に重点を置いており、しばしばICL能力の評価を見落としている。
LLMのICL能力を評価するためにICLEvalベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-21T08:06:10Z) - LLM-based Knowledge Pruning for Time Series Data Analytics on Edge-computing Devices [23.18319883190927]
時系列学習のための新しいパラダイムであるKP(Knowledge Pruning)を提案する。
他の方法とは異なり、我々のKPは冗長な知識を掘り起こし、関連する知識をターゲットモデルにのみ蒸留することを目的としています。
提案したKPにより、軽量ネットワークは適切な知識を効果的に学習し、良好な性能を低コストで達成することができる。
論文 参考訳(メタデータ) (2024-06-13T02:51:18Z) - Enhancing Q-Learning with Large Language Model Heuristics [0.0]
大規模言語モデル(LLM)は、単純なタスクでゼロショット学習を達成できるが、推論速度の低下と時折幻覚に悩まされる。
我々は,LLMを幻覚として活用し,強化学習のためのQ関数の学習を支援するフレームワークであるtextbfLLM-guided Q-learningを提案する。
論文 参考訳(メタデータ) (2024-05-06T10:42:28Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Learning Deep Representations via Contrastive Learning for Instance
Retrieval [11.736450745549792]
本稿では、インスタンス識別に基づくコントラスト学習(CL)を用いて、この問題に取り組むための最初の試みを行う。
本研究では、事前学習されたCLモデルと微調整されたCLモデルから識別表現を導出する能力を探求することにより、この問題に対処する。
論文 参考訳(メタデータ) (2022-09-28T04:36:34Z) - When does return-conditioned supervised learning work for offline
reinforcement learning? [51.899892382786526]
本研究では,リターン条件付き教師あり学習の能力と限界について検討する。
RCSLは、より伝統的な動的プログラミングベースのアルゴリズムに必要なものよりも強い仮定のセットで最適なポリシーを返す。
論文 参考訳(メタデータ) (2022-06-02T15:05:42Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。