論文の概要: LLMs Are In-Context Reinforcement Learners
- arxiv url: http://arxiv.org/abs/2410.05362v1
- Date: Mon, 7 Oct 2024 17:45:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:07:22.206905
- Title: LLMs Are In-Context Reinforcement Learners
- Title(参考訳): LLMはコンテキスト強化学習者である
- Authors: Giovanni Monea, Antoine Bosselut, Kianté Brantley, Yoav Artzi,
- Abstract要約: 大規模言語モデル(LLM)は、コンテキスト内教師あり学習(ICL)を通じて新しいタスクを学習することができる。
この研究は、この能力が文脈内強化学習(ICRL)にまで拡張されるかどうかを研究する。
本稿では、テスト時間計算の増加と計算バウンド近似により、この欠陥に対処するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 30.192422586838997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) can learn new tasks through in-context supervised learning (i.e., ICL). This work studies if this ability extends to in-context reinforcement learning (ICRL), where models are not given gold labels in context, but only their past predictions and rewards. We show that a naive application of ICRL fails miserably, and identify the root cause as a fundamental deficiency at exploration, which leads to quick model degeneration. We propose an algorithm to address this deficiency by increasing test-time compute, as well as a compute-bound approximation. We use several challenging classification tasks to empirically show that our ICRL algorithms lead to effective learning from rewards alone, and analyze the characteristics of this ability and our methods. Overall, our results reveal remarkable ICRL abilities in LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コンテキスト内教師あり学習(ICL)を通じて新しいタスクを学習することができる。
この研究は、この能力が文脈内強化学習(ICRL)にまで拡張されるかどうかを研究する。
そこで本研究では, ICRLの根本原因を探索における根本欠損と同定し, 迅速なモデル変性をもたらすことを示す。
本稿では,テスト時間計算の増加と計算バウンド近似により,この問題に対処するアルゴリズムを提案する。
我々は、ICRLアルゴリズムが報酬のみから効果的な学習につながることを実証的に示すために、いくつかの挑戦的な分類タスクを使用し、この能力と方法の特徴を分析する。
総じて, LLMのICRL能力は顕著であった。
関連論文リスト
- The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
本研究は,インコンテキストの例を用いて誘導されるベースモデルと,命令調整モデルが根本的に異なる機能を持つかどうかを考察する。
命令調整モデルの性能は,基本モデルのコンテキスト内性能と大きく相関していることを示す。
具体的には、この理解を命令付きモデルに拡張し、事前学習データも同様に、解決可能なタスクの制限境界を設定することを示唆する。
論文 参考訳(メタデータ) (2025-01-15T10:57:55Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness [39.57155321515097]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示している。
LLMがグラフ上での学習において堅牢性を示すかどうかは不明である。
論文 参考訳(メタデータ) (2024-07-16T09:05:31Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。