Can LLMs Understand Time Series Anomalies?
- URL: http://arxiv.org/abs/2410.05440v2
- Date: Mon, 14 Oct 2024 23:32:50 GMT
- Title: Can LLMs Understand Time Series Anomalies?
- Authors: Zihao Zhou, Rose Yu,
- Abstract summary: Large Language Models (LLMs) have gained popularity in time series forecasting, but their potential for anomaly detection remains largely unexplored.
Our study investigates whether LLMs can understand and detect anomalies in time series data, focusing on zero-shot and few-shot scenarios.
Our results suggest that while LLMs can understand time series anomalies, many common conjectures based on their reasoning capabilities do not hold.
- Score: 20.848375315326305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have gained popularity in time series forecasting, but their potential for anomaly detection remains largely unexplored. Our study investigates whether LLMs can understand and detect anomalies in time series data, focusing on zero-shot and few-shot scenarios. Inspired by conjectures about LLMs' behavior from time series forecasting research, we formulate key hypotheses about LLMs' capabilities in time series anomaly detection. We design and conduct principled experiments to test each of these hypotheses. Our investigation reveals several surprising findings about LLMs for time series: 1. LLMs understand time series better as images rather than as text 2. LLMs did not demonstrate enhanced performance when prompted to engage in explicit reasoning about time series analysis 3. Contrary to common beliefs, LLM's understanding of time series do not stem from their repetition biases or arithmetic abilities 4. LLMs' behaviors and performance in time series analysis vary significantly across different model architectures This study provides the first comprehensive analysis of contemporary LLM capabilities in time series anomaly detection. Our results suggest that while LLMs can understand time series anomalies, many common conjectures based on their reasoning capabilities do not hold. Our code and data are available at `https://github.com/Rose-STL-Lab/AnomLLM/`.
Related papers
- A Picture is Worth A Thousand Numbers: Enabling LLMs Reason about Time Series via Visualization [38.843506917740115]
We propose TimerBed, the first comprehensive testbed for evaluating large language models' time-series reasoning (TsR) performance.
To address this, we propose a prompt-based solution VL-Time, using visualization-modeled data and language-guided reasoning.
arXiv Detail & Related papers (2024-11-09T00:35:29Z) - Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
Large language models (LLMs) can learn vast amounts of knowledge from diverse domains during pre-training.
Long-tail knowledge from specialized domains is often scarce and underrepresented, rarely appearing in the models' memorization.
We propose a reinforcement learning-based dynamic uncertainty ranking method for ICL that accounts for the varying impact of each retrieved sample on LLM predictions.
arXiv Detail & Related papers (2024-10-31T03:42:17Z) - Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
Large Language Models have demonstrated impressive performance in many pivotal web applications such as sensor data analysis.
In this study, we assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection.
Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data.
arXiv Detail & Related papers (2024-10-16T07:47:31Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
We study the depth of grade-school math problem-solving capabilities of LLMs.
We evaluate their performance on pairs of existing math word problems together.
arXiv Detail & Related papers (2024-10-02T17:01:10Z) - Can LLMs Serve As Time Series Anomaly Detectors? [33.28502093260832]
An emerging topic in large language models (LLMs) is their application to time series forecasting.
In this paper, we investigate the capabilities of LLMs, specifically GPT-4 and LLaMA3, in detecting and explaining anomalies in time series.
arXiv Detail & Related papers (2024-08-06T23:14:39Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.
Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.
Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
We argue that current large language models (LLMs) have the potential to revolutionize time series analysis.
Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering.
arXiv Detail & Related papers (2024-02-05T04:17:49Z) - Are Large Language Models Temporally Grounded? [38.481606493496514]
We provide Large language models (LLMs) with textual narratives.
We probe them with respect to their common-sense knowledge of the structure and duration of events.
We evaluate state-of-the-art LLMs on three tasks reflecting these abilities.
arXiv Detail & Related papers (2023-11-14T18:57:15Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.