論文の概要: Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors
- arxiv url: http://arxiv.org/abs/2409.15548v3
- Date: Fri, 25 Oct 2024 12:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 19:32:29.540005
- Title: Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors
- Title(参考訳): コンフォーマル予測を超える: 信頼予測を用いた適応的コンフォーマル推論
- Authors: Johan Hallberg Szabadváry,
- Abstract要約: コンフォーマル予測は、ユーザ指定の重要度レベルで有効な予測セットを保証するために、交換可能なデータを必要とする。
適応共形推論 (Adaptive conformal inference, ACI) は、この制限に対処するために導入された。
我々は、ACIが共形予測器を必要とせず、より一般的な信頼性予測器で実装可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction (CP) is a robust framework for distribution-free uncertainty quantification, but it requires exchangeable data to ensure valid prediction sets at a user-specified significance level. When this assumption is violated, as in time-series or other structured data, the validity guarantees of CP no longer hold. Adaptive conformal inference (ACI) was introduced to address this limitation by adjusting the significance level dynamically, ensuring finite-sample coverage guarantees even for non-exchangeable data. In this paper, we show that ACI does not require the use of conformal predictors; instead, it can be implemented with the more general confidence predictors, which are computationally simpler and still maintain the crucial property of nested prediction sets. Through experiments on synthetic and real-world data, we demonstrate that confidence predictors can perform comparably to, or even better than, conformal predictors, particularly in terms of computational efficiency. These findings suggest that confidence predictors represent a viable and efficient alternative to conformal predictors in non-exchangeable data settings, although further studies are needed to identify when one method is superior.
- Abstract(参考訳): コンフォーマル予測(CP)は、分散のない不確実性定量化のための堅牢なフレームワークであるが、ユーザ指定の重要度レベルで有効な予測セットを保証するために交換可能なデータを必要とする。
この仮定に違反した場合、時系列や他の構造化データのように、CPの妥当性はもはや保持されない。
適応共形推論 (Adaptive conformal inference, ACI) は、この制限に対応するために重要度を動的に調整し、交換不能なデータに対しても有限サンプルカバレッジを保証する。
本稿では、ACIが共形予測器を必要とせず、より一般的な信頼性予測器で実装可能であることを示す。
合成および実世界のデータに関する実験を通じて、信頼性予測器は、特に計算効率の点で、共形予測器と相容れない、あるいはそれ以上に優れた性能を発揮できることを示した。
これらの結果から,信頼度予測器は非交換不能なデータ設定における共形予測器の代替手段として有効かつ効率的なものであることが示唆された。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
結果として生じる不確実な値の整合性は、学習関数がGPモデルで指定された特性に従うという前提に基づいている。
提案するGPは,分散のない後処理フレームワークである共形予測(CP)を用いて,有意なカバレッジで予測セットを生成する。
論文 参考訳(メタデータ) (2024-10-07T19:22:15Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
この研究は、Pinalized Inverse Probability(PIP)の非整合性スコアと、その正規化バージョンRePIPを導入し、効率性と情報性の両方を共同で最適化する。
この研究は、PIPに基づく共形分類器が、他の非整合性対策と比較して正確に望ましい振る舞いを示し、情報性と効率のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2024-06-13T07:37:16Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
本研究では,トレーニングデータの破損に対して堅牢な,保証されたカバレッジ率で予測セットを生成する手法を開発した。
我々のアプローチは、i.d仮定の下で有効となる予測セットを構築するための強力なフレームワークである共形予測に基づいている。
論文 参考訳(メタデータ) (2024-06-08T08:56:47Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
コンフォーマル予測(CP)は不確実性定量化のための頑健な枠組みである。
非交換性に対処するための既存のアプローチは、最も単純な例を超えて計算不可能なメソッドにつながる。
この研究は、比較的一般的な非交換可能なデータ分布に対して証明可能な信頼セットを生成する、CPに新しい効率的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-25T20:02:51Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
コンフォーマル予測(Conformal prediction)は、予測セットを所望のカバレッジ保証で生成する統計フレームワークである。
我々は、$textitSorted Adaptive Prediction Sets$ (SAPS)という新しいアルゴリズムを提案する。
SAPSは最大ソフトマックス確率を除いて全ての確率値を捨てる。
論文 参考訳(メタデータ) (2023-10-10T08:54:14Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Optimized conformal classification using gradient descent approximation [0.2538209532048866]
コンフォーマル予測器は、ユーザ定義の信頼性レベルで予測を行うことができる。
我々は,共形予測器を直接最大予測効率で訓練する手法を検討する。
実世界の複数のデータセット上で本手法を検証し,本手法が有望であることを示す。
論文 参考訳(メタデータ) (2021-05-24T13:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。