論文の概要: On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory
- arxiv url: http://arxiv.org/abs/2410.05626v1
- Date: Tue, 8 Oct 2024 02:22:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 17:38:51.399232
- Title: On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory
- Title(参考訳): ニューラルタンジェントカーネル理論におけるランダム初期化の影響について
- Authors: Guhan Chen, Yicheng Li, Qian Lin,
- Abstract要約: ネットワークの幅が無限大になる傾向があるため、ランダム初期化を伴うニューラルネットワークはガウス過程$fmathrmGP$に収束することが知られている。
カーネルレグレッションの伝統的な理論を採用するため、最近の研究は、ネットワークの出力が開始時にゼロであることを保証するために、特別なミラー化されたアーキテクチャを導入した。
- 参考スコア(独自算出の注目度): 10.360517127652185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to discuss the impact of random initialization of neural networks in the neural tangent kernel (NTK) theory, which is ignored by most recent works in the NTK theory. It is well known that as the network's width tends to infinity, the neural network with random initialization converges to a Gaussian process $f^{\mathrm{GP}}$, which takes values in $L^{2}(\mathcal{X})$, where $\mathcal{X}$ is the domain of the data. In contrast, to adopt the traditional theory of kernel regression, most recent works introduced a special mirrored architecture and a mirrored (random) initialization to ensure the network's output is identically zero at initialization. Therefore, it remains a question whether the conventional setting and mirrored initialization would make wide neural networks exhibit different generalization capabilities. In this paper, we first show that the training dynamics of the gradient flow of neural networks with random initialization converge uniformly to that of the corresponding NTK regression with random initialization $f^{\mathrm{GP}}$. We then show that $\mathbf{P}(f^{\mathrm{GP}} \in [\mathcal{H}^{\mathrm{NT}}]^{s}) = 1$ for any $s < \frac{3}{d+1}$ and $\mathbf{P}(f^{\mathrm{GP}} \in [\mathcal{H}^{\mathrm{NT}}]^{s}) = 0$ for any $s \geq \frac{3}{d+1}$, where $[\mathcal{H}^{\mathrm{NT}}]^{s}$ is the real interpolation space of the RKHS $\mathcal{H}^{\mathrm{NT}}$ associated with the NTK. Consequently, the generalization error of the wide neural network trained by gradient descent is $\Omega(n^{-\frac{3}{d+3}})$, and it still suffers from the curse of dimensionality. On one hand, the result highlights the benefits of mirror initialization. On the other hand, it implies that NTK theory may not fully explain the superior performance of neural networks.
- Abstract(参考訳): 本稿では,ニューラル・タンジェント・カーネル(NTK)理論におけるニューラルネットワークのランダム初期化の影響について論じる。
ネットワークの幅が無限大になる傾向があるため、ランダム初期化を伴うニューラルネットワークはガウス過程$f^{\mathrm{GP}}$に収束し、$L^{2}(\mathcal{X})$で値を取る。
対照的に、カーネルレグレッションの伝統的な理論を採用するために、最近の研究は、ネットワークの出力が初期化時に全くゼロであることを保証するために、特別なミラー化されたアーキテクチャとミラー化された(ランダム)初期化を導入した。
したがって、従来の設定とミラー化初期化によって、広範囲のニューラルネットワークが異なる一般化能力を示すかどうかには疑問が残る。
本稿では、まず、ランダム初期化を伴うニューラルネットワークの勾配流のトレーニングダイナミクスを、ランダム初期化$f^{\mathrm{GP}}$で対応するNTK回帰のトレーニングダイナミクスに均一に収束することを示す。
すると、$\mathbf{P}(f^{\mathrm{GP}} \in [\mathcal{H}^{\mathrm{NT}}]^{s}) = 1$ for any $s < \frac{3}{d+1}$ and $\mathbf{P}(f^{\mathrm{GP}} \in [\mathcal{H}^{\mathrm{NT}}]^{s}) = 0$ for any $s \geq \frac{3}{d+1}$。
したがって、勾配降下によって訓練された広いニューラルネットワークの一般化誤差は$\Omega(n^{-\frac{3}{d+3}})$であり、それでも次元の呪いに悩まされている。
一方、この結果はミラー初期化の利点を強調している。
一方、NTK理論はニューラルネットワークの優れた性能を完全に説明できない可能性がある。
関連論文リスト
- Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の等方的ガウスデータの下で勾配降下学習の問題を考察する。
SGDアルゴリズムで最適化された2層ニューラルネットワークは、サンプル付き任意のリンク関数の$f_*$を学習し、実行時の複雑さは$n asymp T asymp C(q) cdot dであることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
3層ニューラルネットワークを用いた標準ガウス分布における階層関数の学習問題について検討する。
次数$k$s$p$の大規模なサブクラスの場合、正方形損失における階層的勾配によるトレーニングを受けた3層ニューラルネットワークは、テストエラーを消すためにターゲット$h$を学習する。
この研究は、3層ニューラルネットワークが複雑な特徴を学習し、その結果、幅広い階層関数のクラスを学ぶ能力を示す。
論文 参考訳(メタデータ) (2023-11-23T02:19:32Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Wide neural networks: From non-gaussian random fields at initialization
to the NTK geometry of training [0.0]
パラメータが$n=1014$を超える人工ニューラルネットワークの応用の最近の進歩は、そのようなネットワークの大きな$n$の振る舞いを研究することが極めて重要である。
広義のニューラルネットワークを研究するほとんどの研究は、そのようなネットワークの無限幅$nから+infty$制限に焦点を当てている。
この研究では、それらの振る舞いを大まかに研究するが、有限$n$である。
論文 参考訳(メタデータ) (2023-04-06T21:34:13Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - Generalization Ability of Wide Neural Networks on $\mathbb{R}$ [8.508360765158326]
広い2層ReLUニューラルネットワークのmathbbR$上での一般化能力について検討した。
$i)$幅$mrightarrowinfty$のとき、ニューラルネットワークカーネル(NNK)がNTKに均一に収束すると、$ii)$$$$K_1$のRKHSに対する回帰の最小値が$n-2/3$;$iii)$ 広義のニューラルネットワークをトレーニングする際に早期停止戦略を採用する場合、$ivとなる。
論文 参考訳(メタデータ) (2023-02-12T15:07:27Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
SGDで訓練されたReLU NNは、主方向を回復することで、$y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$という形の単一インデックスターゲットを学習できることを示す。
また、SGDによる近似低ランク構造を用いて、NNに対して圧縮保証を提供する。
論文 参考訳(メタデータ) (2022-09-29T15:29:10Z) - High-dimensional Asymptotics of Feature Learning: How One Gradient Step
Improves the Representation [89.21686761957383]
2層ネットワークにおける第1層パラメータ $boldsymbolW$ の勾配降下ステップについて検討した。
我々の結果は、一つのステップでもランダムな特徴に対してかなりの優位性が得られることを示した。
論文 参考訳(メタデータ) (2022-05-03T12:09:59Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
2層ニューラルネットワークを学習する際の降下のダイナミクスについて考察する。
過度にパラメータ化された2層ニューラルネットワークは、タンジェントサンプルを用いて、ほとんどの地上で勾配損失を許容的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-09T07:09:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。