論文の概要: Extended convexity and smoothness and their applications in deep learning
- arxiv url: http://arxiv.org/abs/2410.05807v2
- Date: Wed, 15 Jan 2025 09:53:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 19:05:07.842506
- Title: Extended convexity and smoothness and their applications in deep learning
- Title(参考訳): 拡張凸性・滑らか性とそのディープラーニングへの応用
- Authors: Binchuan Qi, Wei Gong, Li Li,
- Abstract要約: 本稿では,複合最適化問題のクラス,特にディープラーニングにおける理論的基礎を提供するための最適化フレームワークを提案する。
我々は、$mathcalH(Phi)$-smoothness である対象関数に対するリプシッツの降下法と降下法の滑らかさを解析する。
- 参考スコア(独自算出の注目度): 5.281849820329249
- License:
- Abstract: This paper introduces an optimization framework aimed at providing a theoretical foundation for a class of composite optimization problems, particularly those encountered in deep learning. In this framework, we introduce $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness to generalize the existing concepts of Lipschitz smoothness and strong convexity. Furthermore, we analyze and establish the convergence of both gradient descent and stochastic gradient descent methods for objective functions that are $\mathcal{H}(\Phi)$-smooth. We prove that the optimal convergence rates of these methods depend solely on the homogeneous degree of $\Phi$. Based on these findings, we construct two types of non-convex and non-smooth optimization problems: deterministic composite and stochastic composite optimization problems, which encompass the majority of optimization problems in deep learning. To address these problems, we develop the gradient structure control algorithm and prove that it can locate approximate global optima. This marks a significant departure from traditional non-convex analysis framework, which typically settle for stationary points. Therefore, with the introduction of $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness, along with the GSC algorithm, the non-convex optimization mechanisms in deep learning can be theoretically explained and supported. Finally, the effectiveness of the proposed framework is substantiated through empirical experimentation.
- Abstract(参考訳): 本稿では,複合最適化問題,特にディープラーニングで遭遇した問題に対する理論的基礎を提供するための最適化フレームワークを提案する。
このフレームワークでは、既存のリプシッツの滑らかさと強い凸性の概念を一般化するために、$\mathcal{H}(\phi)$-凸性と$\mathcal{H}(\Phi)$-滑らかさを導入する。
さらに, $\mathcal{H}(\Phi)$-smooth の目的関数に対する勾配降下法と確率勾配降下法の両方の収束を解析・確立する。
これらの手法の最適収束率は、$\Phi$の等質次数のみに依存することを証明している。
これらの結果から,非凸・非滑らかな最適化問題として,決定論的合成問題と確率論的合成最適化問題という,ディープラーニングにおける最適化問題の大部分を含む2種類の非凸・非滑らかな最適化問題を構築した。
これらの問題に対処するため、勾配構造制御アルゴリズムを開発し、大域的最適度を近似できることを示す。
これは従来の非凸解析フレームワークから大きく離れており、通常は静止点に落ち着く。
したがって、GSCアルゴリズムとともに、$\mathcal{H}(\phi)$-convexityと$\mathcal{H}(\Phi)$-smoothnessを導入することにより、ディープラーニングにおける非凸最適化機構を理論的に説明し、支持することができる。
最後に,提案手法の有効性を実証実験により検証した。
関連論文リスト
- Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation [2.3342885570554652]
本稿では,プロセスカーネルに対する一括近似と,取得関数に対するMIQP表現を紹介する。
我々は,合成関数,制約付きベンチマーク,ハイパーチューニングタスクに関するフレームワークを実証的に実証した。
論文 参考訳(メタデータ) (2024-10-22T10:56:52Z) - PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates [17.777466668123886]
PROMISE ($textbfPr$econditioned $textbfO$ptimization $textbfM$ethods by $textbfI$ncorporating $textbfS$calable Curvature $textbfE$stimates)はスケッチベースの事前条件勾配アルゴリズムである。
PROMISEには、SVRG、SAGA、およびKatyushaのプレコンディション版が含まれている。
論文 参考訳(メタデータ) (2023-09-05T07:49:10Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and
Nonsmooth Bi-level Optimization [26.68351521813062]
既存のバイレベルアルゴリズムは、非滑らかまたは超滑らかな正規化器を扱えない。
本稿では,包括的機械学習アプリケーションを高速化するために,暗黙差分法(AID)が有効であることを示す。
論文 参考訳(メタデータ) (2022-03-30T18:53:04Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。