論文の概要: PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
- arxiv url: http://arxiv.org/abs/2410.05970v2
- Date: Mon, 20 Jan 2025 21:45:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:18:45.353030
- Title: PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
- Title(参考訳): PDF-WuKong: エンド・ツー・エンドスパースサンプリングによる高効率PDF読解のための大規模マルチモーダルモデル
- Authors: Xudong Xie, Hao Yan, Liang Yin, Yang Liu, Jing Ding, Minghui Liao, Yuliang Liu, Wei Chen, Xiang Bai,
- Abstract要約: マルチモーダル文書理解は,大量のテキスト情報や視覚情報を処理し,理解するための課題である。
大規模言語モデル(LLM)の最近の進歩は、このタスクの性能を大幅に改善した。
長いPDF文書に対する多モーダル質問回答(QA)を強化するために設計された多モーダル大言語モデル(MLLM)であるPDF-WuKongを紹介する。
- 参考スコア(独自算出の注目度): 63.93112754821312
- License:
- Abstract: Multimodal document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially for academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of English and Chinese academic papers. Multiple strategies are proposed to automatically generate 1.1 million QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal document understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
- Abstract(参考訳): マルチモーダル文書理解は,大量のテキスト情報や視覚情報を処理し,理解するための課題である。
大規模言語モデル(LLM)の最近の進歩は、このタスクの性能を大幅に改善した。
しかし、既存の手法は、通常、平易なテキストまたは限られた数の文書画像に焦点を合わせ、特に学術論文において、インターリーブされたテキストと画像で長いPDF文書を扱うのに苦労している。
本稿では,長いPDF文書に対する多モーダル質問回答(QA)の強化を目的とした多モーダル大言語モデル(MLLM)であるPDF-WuKongを紹介する。
PDF-WuKongはテキストと画像表現の両方で動作するスパースサンプルを組み込んでおり、MLLMの効率と能力を大幅に改善している。
スパースサンプリングはMLLMの画像エンコーダと統合され、言語モデルにより処理されるユーザクエリに関連する段落やダイアグラムを選択する。
本モデルを効果的に訓練し,評価するために,英漢学術論文の広範なコレクションからなるデータセットであるPaperPDFを構築した。
複数の戦略が提案され、100万のQAペアとそれに対応するエビデンスソースを自動生成する。
実験の結果,F1上でのプロプライエタリ製品を平均8.6%上回る長大なマルチモーダル文書理解作業において,他のモデルに対するアプローチの優位性と高い効率性を示した。
私たちのコードとデータセットはhttps://github.com/yh-hust/PDF-Wukong.comで公開されます。
関連論文リスト
- M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework [75.95430061891828]
851サンプルのベンチマークであるM-LongDocと、大規模マルチモーダルモデルの性能を評価するための自動フレームワークを紹介する。
効率的なマルチモーダル文書読解のための検索対応チューニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-09T13:30:38Z) - Hierarchical Visual Feature Aggregation for OCR-Free Document Understanding [41.43688559565315]
我々は、事前訓練されたマルチモーダル大言語モデル(MLLM)に基づく新しいOCRフリー文書理解フレームワークを提案する。
本手法では,文書画像内のフォントサイズを多種多様な視覚的特徴量で処理する。
そこで本研究では,入力テキストの相対的な位置を学習することで,モデルのテキスト読解能力を向上させる新しい命令チューニングタスクを提案する。
論文 参考訳(メタデータ) (2024-11-08T00:58:12Z) - mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
本稿では,高解像度文書画像を324個のトークンに圧縮する高解像度DocCompressorモジュールを提案する。
DocOwl2は、マルチページ文書理解ベンチマークにまたがる最先端の新たなベンチマークを設定し、最初のトークンレイテンシを50%以上削減する。
同様のデータで訓練されたシングルイメージMLLMと比較して、DocOwl2はビジュアルトークンの20%未満で、同等のシングルページ理解性能を実現しています。
論文 参考訳(メタデータ) (2024-09-05T11:09:00Z) - From Text to Pixel: Advancing Long-Context Understanding in MLLMs [70.78454154014989]
本稿では,この問題に対処するために設計された多モーダル大規模言語モデルであるSEEKERを紹介する。
SEEKERは、画像を介してテキストシーケンスを視覚ピクセル空間に圧縮することで、長文のコンパクトエンコーディングを最適化することを目的としている。
6つの長文マルチモーダルタスクに関する実験により、SEEKERは、OCRベースの手法と比較して、同じ量のテキスト情報を伝達するために、少ない画像トークンを利用できることを示した。
論文 参考訳(メタデータ) (2024-05-23T06:17:23Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawkは文書指向マルチモーダル言語モデル(MLLM)である。
4つの専用コンポーネントを設計することで、効率的な微粒化知覚を探索するように設計されている。
汎用MLLMベンチマークと文書指向MLLMベンチマークの両方で広範な実験を行い、TextHawkが最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-14T09:48:37Z) - Modular Multimodal Machine Learning for Extraction of Theorems and Proofs in Long Scientific Documents (Extended Version) [0.0]
学術的なPDF論文から数学的ステートメントの抽出とその証明をマルチモーダルな分類問題として扱う。
本稿では,定理のような環境や証明を抽出するモジュール型連続型マルチモーダル機械学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-18T07:59:37Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - Robust PDF Document Conversion Using Recurrent Neural Networks [0.0]
本稿では,リカレントニューラルネットワークを用いたpdfの文書構造復元手法を提案する。
ニューラルネットワークへの入力としてPDF印刷コマンドのシーケンスをどのように使用できるかを示す。
17の異なる構造ラベルで97%の重み付き平均F1スコアを得るモデルを実装します。
論文 参考訳(メタデータ) (2021-02-18T14:39:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。