論文の概要: Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG
- arxiv url: http://arxiv.org/abs/2410.05983v1
- Date: Tue, 8 Oct 2024 12:30:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:50:19.114607
- Title: Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG
- Title(参考訳): RAGとLong-Context LLM - RAGにおけるLong-Inputsの課題を克服する
- Authors: Bowen Jin, Jinsung Yoon, Jiawei Han, Sercan O. Arik,
- Abstract要約: Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)に外部の知識ソースを利用する権限を与える。
本稿では, 回収した「ハードネガティブ」の有害な影響について考察する。
これを緩和し、長文LLMベースのRAGの堅牢性を高めるために、トレーニングフリーとトレーニングベースの両方のアプローチを提案する。
- 参考スコア(独自算出の注目度): 36.754491649652664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources. The increasing capacity of LLMs to process longer input sequences opens up avenues for providing more retrieved information, to potentially enhance the quality of generated outputs. It is plausible to assume that a larger retrieval set would contain more relevant information (higher recall), that might result in improved performance. However, our empirical findings demonstrate that for many long-context LLMs, the quality of generated output initially improves first, but then subsequently declines as the number of retrieved passages increases. This paper investigates this phenomenon, identifying the detrimental impact of retrieved "hard negatives" as a key contributor. To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches. We first showcase the effectiveness of retrieval reordering as a simple yet powerful training-free optimization. Furthermore, we explore training-based methods, specifically RAG-specific implicit LLM fine-tuning and RAG-oriented fine-tuning with intermediate reasoning, demonstrating their capacity for substantial performance gains. Finally, we conduct a systematic analysis of design choices for these training-based methods, including data distribution, retriever selection, and training context length.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、大規模言語モデル(LLM)に外部知識ソースを利用する権限を与える。
より長い入力シーケンスを処理するLLMの容量が増加すると、より検索された情報を提供するための道が開き、生成した出力の品質が向上する可能性がある。
より大きな検索セットがより関連性の高い情報(より高いリコール)を含んでいると仮定すると、パフォーマンスが向上する可能性がある。
しかし,多くの長文LCMにおいて,生成した出力の質は最初は向上するが,その後,検索されたパス数が増えるにつれて低下することを示す実験結果が得られた。
本稿では, 回収した「硬い負」の有害な影響を鍵要因として, この現象を解明する。
これを緩和し、長文LLMベースのRAGの堅牢性を高めるために、トレーニングフリーとトレーニングベースの両方のアプローチを提案する。
まず,検索リオーダーの有効性を,単純かつ強力なトレーニングフリー最適化として示す。
さらに、トレーニングベースの手法、特にRAG固有の暗黙的なLCM微調整とRAG指向の微調整を中間的推論で検討し、その性能向上の可能性を実証した。
最後に,データ配信,検索者選択,学習コンテキスト長など,これらのトレーニングベースの手法の設計選択を体系的に分析する。
関連論文リスト
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation [20.420575358183687]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)に固有の幻覚を緩和する有効な方法であることが証明されている。
従来のアプローチでは、通常、RAGの最適化に欠けるセマンティックな類似性に基づいて、レトリバーをトレーニングする。
我々は,LLMの言語機能を活用して,より粒度の細かい情報中心の視点からサンプルを構築する新しいフレームワークFiGRetを提案する。
論文 参考訳(メタデータ) (2024-11-06T14:42:39Z) - Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
大規模言語モデル(LLM)は、内部(パラメトリック)知識にのみ依存して、事実的な回答を生成するのに苦労することが多い。
この制限に対処するため、Retrieval-Augmented Generation (RAG)システムでは、外部ソースから関連情報を検索することでLLMを強化している。
我々はLLMのランキング機能を活用してW-RAGを提案する。
論文 参考訳(メタデータ) (2024-08-15T22:34:44Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを51%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - On the Role of Long-tail Knowledge in Retrieval Augmented Large Language Models [33.08049246893537]
検索拡張現実(RAG)は,大規模言語モデル(LLM)の知識能力向上に際し,優れた性能を示す
本稿では,LLMの簡易かつ効果的なロングテール知識検出手法を提案する。
提案手法は,平均推定時間で4倍以上の高速化を実現し,下流タスクにおける一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2024-06-24T07:17:59Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。