論文の概要: Generalized Sparse Additive Model with Unknown Link Function
- arxiv url: http://arxiv.org/abs/2410.06012v2
- Date: Fri, 11 Oct 2024 08:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 11:40:34.084448
- Title: Generalized Sparse Additive Model with Unknown Link Function
- Title(参考訳): 未知リンク関数を持つ一般化スパース付加モデル
- Authors: Peipei Yuan, Xinge You, Hong Chen, Xuelin Zhang, Qinmu Peng,
- Abstract要約: 我々は、未知リンク関数(GSAMUL)を持つ一般化スパース加法モデルという新しいスパース加法モデルを提案する。
成分関数はB-スプラインベースで推定され、未知リンク関数は多層パーセプトロン(MLP)ネットワークで推定される。
応用において、合成および実世界のデータセットの実験的評価は、提案手法の有効性を一貫して検証する。
- 参考スコア(独自算出の注目度): 19.807823040041896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized additive models (GAM) have been successfully applied to high dimensional data analysis. However, most existing methods cannot simultaneously estimate the link function, the component functions and the variable interaction. To alleviate this problem, we propose a new sparse additive model, named generalized sparse additive model with unknown link function (GSAMUL), in which the component functions are estimated by B-spline basis and the unknown link function is estimated by a multi-layer perceptron (MLP) network. Furthermore, $\ell_{2,1}$-norm regularizer is used for variable selection. The proposed GSAMUL can realize both variable selection and hidden interaction. We integrate this estimation into a bilevel optimization problem, where the data is split into training set and validation set. In theory, we provide the guarantees about the convergence of the approximate procedure. In applications, experimental evaluations on both synthetic and real world data sets consistently validate the effectiveness of the proposed approach.
- Abstract(参考訳): 一般化加法モデル(GAM)は高次元データ解析に成功している。
しかし、既存のほとんどのメソッドは、リンク関数、コンポーネント関数、変数相互作用を同時に見積もることはできない。
この問題を軽減するために,未知リンク関数 (GSAMUL) を持つ一般化スパース付加モデル(一般スパース付加モデル)を提案し,B-スプラインベースと未知リンク関数を多層パーセプトロン (MLP) ネットワークで推定する。
さらに$\ell_{2,1}$-norm正規化器は変数選択に使用される。
提案したGSAMULは、可変選択と隠れ相互作用の両方を実現することができる。
この推定を二段階最適化問題に統合し、データをトレーニングセットと検証セットに分割する。
理論的には、近似手順の収束に関する保証を提供する。
応用において、合成および実世界のデータセットの実験的評価は、提案手法の有効性を一貫して検証する。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - RUMBoost: Gradient Boosted Random Utility Models [0.0]
RUMBoostモデルは、ランダムユーティリティモデル(RUM)の解釈可能性と行動的堅牢性と、ディープラーニング手法の一般化と予測能力を組み合わせる。
本稿では,RUMBoostモデルとMLおよびRandom Utilityベンチマークモデルとの比較を行い,ロンドンの選好モード選択データについて検討した。
論文 参考訳(メタデータ) (2024-01-22T13:54:26Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse
Additive Models with Feature Division and Decorrelation [16.232378903482143]
本稿では,高次元のスパース加法モデルの下で特徴を分割する分散統計学習アルゴリズムDDAC-SpAMを提案する。
提案アルゴリズムの有効性と有効性は, 合成データと実データの両方に関する理論的解析と実験結果によって実証される。
提案手法は, スパース加法モデルと, 広範囲の領域で有望な応用を実現するための実用的ソリューションを提供する。
論文 参考訳(メタデータ) (2022-05-16T18:31:03Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z) - Improving the quality of generative models through Smirnov
transformation [1.3492000366723798]
本稿では,ジェネレータの出力として使用される新しいアクティベーション関数を提案する。
これはスミルノフ確率変換に基づいており、生成されたデータの品質を改善するために特別に設計されている。
論文 参考訳(メタデータ) (2021-10-29T17:01:06Z) - Quantum-Assisted Feature Selection for Vehicle Price Prediction Modeling [0.0]
本研究では,一般平均情報係数やピアソン相関係数などの二元モデルとして検索を符号化する指標について検討する。
我々は,新しい指標を用いて合成データの最適部分集合を求めるための0.9の精度スコアを得る。
その結果、量子支援ルーチンを活用することで、予測モデル出力の品質を高めるソリューションが見つかることが分かりました。
論文 参考訳(メタデータ) (2021-04-08T20:48:44Z) - Information-theoretic Feature Selection via Tensor Decomposition and
Submodularity [38.05393186002834]
本稿では,全ての変数の結合PMFの低ランクテンソルモデルを導入し,複雑性を緩和し,与えられた特徴量の分類性能を最大化する手法として間接的ターゲットを提案する。
原目標変数の代わりにネイブベイズモデルの潜伏変数を間接的に予測することにより、濃度制約を受ける単調部分モジュラ函数として特徴選択問題を定式化することができる。
論文 参考訳(メタデータ) (2020-10-30T10:36:46Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。