Entering Real Social World! Benchmarking the Social Intelligence of Large Language Models from a First-person Perspective
- URL: http://arxiv.org/abs/2410.06195v2
- Date: Sat, 28 Dec 2024 16:46:16 GMT
- Title: Entering Real Social World! Benchmarking the Social Intelligence of Large Language Models from a First-person Perspective
- Authors: Guiyang Hou, Wenqi Zhang, Yongliang Shen, Zeqi Tan, Sihao Shen, Weiming Lu,
- Abstract summary: Social intelligence is built upon three pillars: cognitive intelligence, situational intelligence, and behavioral intelligence.
EgoSocialArena aims to systematically evaluate the social intelligence of large language models from a first-person perspective.
- Score: 22.30892836263764
- License:
- Abstract: Social intelligence is built upon three foundational pillars: cognitive intelligence, situational intelligence, and behavioral intelligence. As large language models (LLMs) become increasingly integrated into our social lives, understanding, evaluating, and developing their social intelligence are becoming increasingly important. While multiple existing works have investigated the social intelligence of LLMs, (1) most focus on a specific aspect, and the social intelligence of LLMs has yet to be systematically organized and studied; (2) position LLMs as passive observers from a third-person perspective, such as in Theory of Mind (ToM) tests. Compared to the third-person perspective, ego-centric first-person perspective evaluation can align well with actual LLM-based Agent use scenarios. (3) a lack of comprehensive evaluation of behavioral intelligence, with specific emphasis on incorporating critical human-machine interaction scenarios. In light of this, we present EgoSocialArena, a novel framework grounded in the three pillars of social intelligence: cognitive, situational, and behavioral intelligence, aimed to systematically evaluate the social intelligence of LLMs from a first-person perspective. With EgoSocialArena, we have conducted a comprehensive evaluation of eight prominent foundation models, even the most advanced LLMs like o1-preview lag behind human performance by 11.0 points.
Related papers
- Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - InterIntent: Investigating Social Intelligence of LLMs via Intention Understanding in an Interactive Game Context [27.740204336800687]
Large language models (LLMs) have demonstrated the potential to mimic human social intelligence.
We develop a novel framework, InterIntent, to assess LLMs' social intelligence by mapping their ability to understand and manage intentions in a game setting.
arXiv Detail & Related papers (2024-06-18T02:02:15Z) - Ask LLMs Directly, "What shapes your bias?": Measuring Social Bias in Large Language Models [11.132360309354782]
Social bias is shaped by the accumulation of social perceptions towards targets across various demographic identities.
We propose a novel strategy to intuitively quantify social perceptions and suggest metrics that can evaluate the social biases within large language models.
arXiv Detail & Related papers (2024-06-06T13:32:09Z) - SOTOPIA-$π$: Interactive Learning of Socially Intelligent Language Agents [73.35393511272791]
We propose an interactive learning method, SOTOPIA-$pi$, improving the social intelligence of language agents.
This method leverages behavior cloning and self-reinforcement training on filtered social interaction data according to large language model (LLM) ratings.
arXiv Detail & Related papers (2024-03-13T17:17:48Z) - Academically intelligent LLMs are not necessarily socially intelligent [56.452845189961444]
The academic intelligence of large language models (LLMs) has made remarkable progress in recent times, but their social intelligence performance remains unclear.
Inspired by established human social intelligence frameworks, we have developed a standardized social intelligence test based on real-world social scenarios.
arXiv Detail & Related papers (2024-03-11T10:35:53Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and humans.
In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals.
We find that GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills.
arXiv Detail & Related papers (2023-10-18T02:27:01Z) - Influence of External Information on Large Language Models Mirrors
Social Cognitive Patterns [51.622612759892775]
Social cognitive theory explains how people learn and acquire knowledge through observing others.
Recent years have witnessed the rapid development of large language models (LLMs)
LLMs, as AI agents, can observe external information, which shapes their cognition and behaviors.
arXiv Detail & Related papers (2023-05-08T16:10:18Z) - Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs [77.88043871260466]
We show that one of today's largest language models lacks this kind of social intelligence out-of-the box.
We conclude that person-centric NLP approaches might be more effective towards neural Theory of Mind.
arXiv Detail & Related papers (2022-10-24T14:58:58Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
We argue that empirical results from social psychology and social neuroscience along with the framework of dynamics can be of inspiration to the development of more intelligent artificial agents.
arXiv Detail & Related papers (2021-12-31T13:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.