論文の概要: Are Large Language Models State-of-the-art Quality Estimators for Machine Translation of User-generated Content?
- arxiv url: http://arxiv.org/abs/2410.06338v1
- Date: Tue, 8 Oct 2024 20:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 06:19:07.034185
- Title: Are Large Language Models State-of-the-art Quality Estimators for Machine Translation of User-generated Content?
- Title(参考訳): 大規模言語モデルはユーザ生成コンテンツの機械翻訳のための最先端の品質推定器か?
- Authors: Shenbin Qian, Constantin Orăsan, Diptesh Kanojia, Félix do Carmo,
- Abstract要約: 本稿では,ユーザ生成コンテンツ(UGC)の機械翻訳において,大規模言語モデル(LLM)が最先端の品質評価手法であるかどうかを検討する。
既存の感情関連データセットに人為的アノテートエラーを付加し,多次元品質指標に基づく品質評価スコアを算出した。
- 参考スコア(独自算出の注目度): 6.213698466889738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates whether large language models (LLMs) are state-of-the-art quality estimators for machine translation of user-generated content (UGC) that contains emotional expressions, without the use of reference translations. To achieve this, we employ an existing emotion-related dataset with human-annotated errors and calculate quality evaluation scores based on the Multi-dimensional Quality Metrics. We compare the accuracy of several LLMs with that of our fine-tuned baseline models, under in-context learning and parameter-efficient fine-tuning (PEFT) scenarios. We find that PEFT of LLMs leads to better performance in score prediction with human interpretable explanations than fine-tuned models. However, a manual analysis of LLM outputs reveals that they still have problems such as refusal to reply to a prompt and unstable output while evaluating machine translation of UGC.
- Abstract(参考訳): 本稿では,大言語モデル(LLM)が,参照翻訳を使わずに感情表現を含むユーザ生成コンテンツ(UGC)の機械翻訳のための最先端品質推定器であるか否かを検討する。
これを実現するために,人間の注釈付き誤りを含む既存の感情関連データセットを用いて,多次元品質指標に基づく品質評価スコアを算出する。
テキスト内学習とパラメータ効率のよい微調整(PEFT)のシナリオにおいて,複数のLDMの精度を,我々の微調整ベースラインモデルと比較した。
LLMのPEFTは、微調整モデルよりも人間の解釈可能な説明を用いてスコア予測の性能を向上させることが判明した。
しかし、LCM出力のマニュアル解析により、UGCの機械翻訳を評価しながら、迅速な不安定な出力への応答を拒否するなどの問題がまだ残っていることが明らかとなった。
関連論文リスト
- What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - MQM-APE: Toward High-Quality Error Annotation Predictors with Automatic Post-Editing in LLM Translation Evaluators [53.91199933655421]
大規模言語モデル(LLM)は、機械翻訳(MT)の品質評価の裁判官として大きな可能性を秘めている。
LLM評価器によって予測されるエラーアノテーションの品質を高めるために,ユニバーサルでトレーニング不要なフレームワークである$textbfMQM-APEを導入する。
論文 参考訳(メタデータ) (2024-09-22T06:43:40Z) - Guiding In-Context Learning of LLMs through Quality Estimation for Machine Translation [0.846600473226587]
本稿では、ドメイン固有品質推定(QE)によって導かれる探索アルゴリズムに依存する、文脈内学習(ICL)の新しい手法を提案する。
予備学習言語モデル(PLM)の微調整と比較すると,既存のICL法と翻訳性能は大幅に向上した。
論文 参考訳(メタデータ) (2024-06-12T07:49:36Z) - Context-Aware Machine Translation with Source Coreference Explanation [26.336947440529713]
本稿では,入力中のコア参照の特徴を予測し,翻訳のための意思決定を説明するモデルを提案する。
我々は、WMT文書レベルの翻訳タスクにおいて、英語-ドイツ語データセット、英語-ロシア語データセット、多言語TEDトークデータセットの評価を行った。
論文 参考訳(メタデータ) (2024-04-30T12:41:00Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
本研究では,機械翻訳評価タスクにおいて,Large Language Models (LLM) がソースデータと参照データをどのように活用するかを検討する。
参照情報が評価精度を大幅に向上させるのに対して,意外なことに,ソース情報は時として非生産的である。
論文 参考訳(メタデータ) (2024-01-12T13:23:21Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
我々は、テキスト単純化(TS)タスク上で、最新の最先端の大規模言語モデル(LLM)のパフォーマンスベンチマークであるBLESSを紹介する。
異なるドメイン(Wikipedia、ニュース、医療)の3つのテストセットに対して、サイズ、アーキテクチャ、事前学習方法、アクセシビリティの異なる44のモデルを評価する。
評価の結果,最高のLSMはTSのトレーニングを受けていないにもかかわらず,最先端のTSベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2023-10-24T12:18:17Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQMは,大規模な言語モデルに対して,翻訳におけるエラーの識別と分類を求めるプロンプト技術である。
テキスト内学習と微調整によるラベル付きデータの影響について検討する。
次に, PaLM-2モデルを用いてAutoMQMを評価し, スコアのプロンプトよりも性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-08-14T17:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。