論文の概要: Phase Diagram from Nonlinear Interaction between Superconducting Order and Density: Toward Data-Based Holographic Superconductor
- arxiv url: http://arxiv.org/abs/2410.06523v1
- Date: Wed, 9 Oct 2024 03:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:09:09.848304
- Title: Phase Diagram from Nonlinear Interaction between Superconducting Order and Density: Toward Data-Based Holographic Superconductor
- Title(参考訳): 超伝導秩序と密度の非線形相互作用からの位相図:データに基づくホログラフィック超伝導体へ向けて
- Authors: Sejin Kim, Kyung Kiu Kim, Yunseok Seo,
- Abstract要約: 物理インフォームドニューラルネットワークを用いて、位相遷移の振る舞いを理解するために必要となる質量関数$M(F2)$を求める。
我々は,アルゴリズムの学習過程を改善するために位置埋め込み層を導入し,Adam最適化を用いてホログラフィック計算による臨界温度データを精度良く予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address an inverse problem in modeling holographic superconductors. We focus our research on the critical temperature behavior depicted by experiments. We use a physics-informed neural network method to find a mass function $M(F^2)$, which is necessary to understand phase transition behavior. This mass function describes a nonlinear interaction between superconducting order and charge carrier density. We introduce positional embedding layers to improve the learning process in our algorithm, and the Adam optimization is used to predict the critical temperature data via holographic calculation with appropriate accuracy. Consideration of the positional embedding layers is motivated by the transformer model of natural-language processing in the artificial intelligence (AI) field. We obtain holographic models that reproduce borderlines of the normal and superconducting phases provided by actual data. Our work is the first holographic attempt to match phase transition data quantitatively obtained from experiments. Also, the present work offers a new methodology for data-based holographic models.
- Abstract(参考訳): ホログラフィック超伝導体のモデリングにおける逆問題に対処する。
我々は,実験によって表される臨界温度挙動に焦点をあてる。
物理インフォームドニューラルネットワークを用いて、位相遷移の挙動を理解するために必要となる質量関数$M(F^2)$を求める。
この質量関数は超伝導秩序と電荷キャリア密度の間の非線形相互作用を記述する。
我々は,アルゴリズムの学習過程を改善するために位置埋め込み層を導入し,Adam最適化を用いてホログラフィック計算による臨界温度データを予測する。
位置埋め込み層の考察は、人工知能(AI)分野における自然言語処理のトランスフォーマーモデルによって動機付けられている。
本研究は, 実データから得られた常・超伝導相の境界線を再現するホログラフィックモデルを得る。
我々の研究は、実験から得られた相転移データを定量的にマッチングする最初のホログラフィックの試みである。
また、本研究は、データに基づくホログラフィーモデルのための新しい方法論を提供する。
関連論文リスト
- Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
本研究では, ソフトマックスを用いた自己保持層と, 勾配勾配下での完全連結層からなるトランスフォーマーの最適化について検討した。
この結果から,データモデルにおける信号対雑音比に基づいて,小さなテストエラー位相と大規模なテストエラー状態とを区別できるシャープ条件を確立した。
論文 参考訳(メタデータ) (2024-09-28T13:24:11Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
トランスフォーマーは、シーケンシャルなデータを扱う優れた能力のために、現代の機械学習において驚くべき成功を収めています。
本稿では, 単層変圧器のトレーニング力学の微細な非漸近解析を行う。
トレーニングされたトランスフォーマーは,データセットシフトによる非トーケン予測能力を示すことを示す。
論文 参考訳(メタデータ) (2024-09-25T20:22:06Z) - Cascade of phase transitions in the training of Energy-based models [9.945465034701288]
原型エネルギーベース生成モデルBernoulli-Bernoulli RBMの特徴符号化過程について検討した。
本研究は、その特異値分解によるモデルの重み行列の進化をトラックする。
我々はBernoulli-Bernoulli RBMを実データ集合上でトレーニングすることで理論的結果を検証する。
論文 参考訳(メタデータ) (2024-05-23T15:25:56Z) - Gradformer: Graph Transformer with Exponential Decay [69.50738015412189]
グラフ変換器(GT)の自己保持機構は、グラフの帰納バイアス、特に構造に関するバイアスを見落としている。
本稿では,GTと本質的帰納バイアスを革新的に統合するGradformerを提案する。
GradformerはグラフニューラルネットワークやGTベースラインモデルよりも、さまざまなグラフ分類や回帰タスクにおいて一貫して優れています。
論文 参考訳(メタデータ) (2024-04-24T08:37:13Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - Hybrid full-field thermal characterization of additive manufacturing
processes using physics-informed neural networks with data [5.653328302363391]
我々は,物理インフォームドニューラルネットワークを用いたAMプロセスのハイブリッドなデータ駆動熱モデリング手法を開発した。
赤外線カメラから測定された部分観測温度データと物理法則を組み合わせることで、全球温度履歴を予測する。
その結果,ハイブリッド熱モデルでは未知のパラメータを効果的に同定し,フルフィールド温度を正確に把握できることがわかった。
論文 参考訳(メタデータ) (2022-06-15T18:27:10Z) - Unsupervised and supervised learning of interacting topological phases
from single-particle correlation functions [0.0]
本研究では、教師なしおよび教師なしの機械学習技術が、解決可能なモデルのデータに基づいて訓練された場合、正確には解決不可能なモデルのフェーズを予測することができることを示す。
特に,非相互作用量子ワイヤの単一粒子相関関数を用いたトレーニングセットを用いる。
非相互作用モデルのデータに基づいてトレーニングされた主成分分析と畳み込みニューラルネットワークの両方が、相互作用モデルの位相位相を高い精度で識別できることを示す。
論文 参考訳(メタデータ) (2022-02-18T16:02:29Z) - Physics-informed Convolutional Neural Networks for Temperature Field
Prediction of Heat Source Layout without Labeled Data [9.71214034180507]
本稿では,熱シミュレーションサロゲートのための物理インフォームド畳み込みニューラルネットワーク(CNN)を開発した。
ネットワークは、熱源配置から、ラベル付きデータなしで定常温度場へのマッピングを学習でき、これは部分差分方程式(PDE)の族全体の解法と等しい。
論文 参考訳(メタデータ) (2021-09-26T03:24:23Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
超低温原子からの実験データに教師なし機械学習技術を適用する。
我々は、完全にバイアスのない方法で、ハルダンモデルの位相位相図を得る。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2021-01-14T16:38:21Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。