論文の概要: Chip-Tuning: Classify Before Language Models Say
- arxiv url: http://arxiv.org/abs/2410.06541v1
- Date: Fri, 11 Oct 2024 05:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:09:09.765009
- Title: Chip-Tuning: Classify Before Language Models Say
- Title(参考訳): Chip-Tuning: 言語モデルが言う前に分類する
- Authors: Fangwei Zhu, Dian Li, Jiajun Huang, Gang Liu, Hui Wang, Zhifang Sui,
- Abstract要約: チップチューニングは、分類問題に対するシンプルで効果的な構造化プルーニングフレームワークである。
チップチューニングは,従来の最先端のベースラインを精度とプルーニング比の両方で大幅に上回っていることを示す。
また、チップチューニングはマルチモーダルモデルに適用でき、モデル微調整と組み合わせることで、優れた互換性が証明できる。
- 参考スコア(独自算出の注目度): 25.546473157624945
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid development in the performance of large language models (LLMs) is accompanied by the escalation of model size, leading to the increasing cost of model training and inference. Previous research has discovered that certain layers in LLMs exhibit redundancy, and removing these layers brings only marginal loss in model performance. In this paper, we adopt the probing technique to explain the layer redundancy in LLMs and demonstrate that language models can be effectively pruned with probing classifiers. We propose chip-tuning, a simple and effective structured pruning framework specialized for classification problems. Chip-tuning attaches tiny probing classifiers named chips to different layers of LLMs, and trains chips with the backbone model frozen. After selecting a chip for classification, all layers subsequent to the attached layer could be removed with marginal performance loss. Experimental results on various LLMs and datasets demonstrate that chip-tuning significantly outperforms previous state-of-the-art baselines in both accuracy and pruning ratio, achieving a pruning ratio of up to 50%. We also find that chip-tuning could be applied on multimodal models, and could be combined with model finetuning, proving its excellent compatibility.
- Abstract(参考訳): 大規模言語モデル(LLM)の性能の急激な発展は、モデルサイズがエスカレーションされ、モデルトレーニングと推論のコストが増大する。
従来の研究では、LLMの特定の層が冗長性を示し、これらの層を取り除くことで、モデルの性能がわずかに損なわれることが判明した。
本稿では, LLMの層冗長性を説明するために, 探索手法を採用し, 探索型分類器を用いて言語モデルを効果的に解析できることを実証する。
分類問題に特化した簡易かつ効果的な構造化プルーニングフレームワークであるチップチューニングを提案する。
チップチューニングは、LLMの異なる層にチップという名前の小さなプロブリング分類器を取り付け、バックボーンモデルが凍結されたチップを訓練する。
分類用チップを選択した後、付加層に後続するすべての層は、限界性能損失で除去できる。
各種LLMおよびデータセットによる実験結果から,チップチューニングは従来の最先端のベースラインよりも精度とプルーニング比の両方で有意に優れ,プルーニング比が最大50%に達することが示された。
また、チップチューニングはマルチモーダルモデルに適用でき、モデル微調整と組み合わせることで、優れた互換性が証明できる。
関連論文リスト
- Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - Streamlining Redundant Layers to Compress Large Language Models [21.27944103424621]
本稿では,LLM-Streamlineについて紹介する。
LLM-Streamlineは2つの部分から構成される: 層プルーニング(Layer pruning)は、ターゲットの間隔に基づいて最も重要でない連続的な層を除去する。
実験により, LLM-Streamlineは, 性能および訓練効率の両面において, 先行および同時のプルーニング法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-28T04:12:13Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You Expect [38.148626520751385]
LLM(Large Language Models)の多くの層は高い類似性を示し、いくつかの層はネットワーク機能において無視できる役割を担っている。
レイヤ除去という,冗長なレイヤを直接削除する,簡単なプルーニング手法を提案する。
実験により,我々はShortGPT(ショートGPT)と呼ぶ手法を,モデルプルーニングにおける従来のSOTA(State-of-the-art)手法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T17:04:18Z) - LaCo: Large Language Model Pruning via Layer Collapse [56.92068213969036]
トランスフォーマーに基づく大規模言語モデル(LLM)は、サイズ拡大の顕著な傾向を目撃している。
モデル量子化、知識蒸留、モデルプルーニングといった既存の手法は、様々な問題によって制約されている。
後部モデル層が前層に崩壊する「textitLayer Collapse (LaCo)」と呼ばれる簡潔な層構造プルーナーを提案する。
論文 参考訳(メタデータ) (2024-02-17T04:16:30Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
我々は,事前訓練された大規模モデルからより小型のLCMを開発するための効果的な方法として構造化プルーニングについて検討した。
提案手法では,(1)階層,頭部,中間および隠蔽次元をエンド・ツー・エンドに除去することで,より大きなモデルを特定のターゲット形状にプルーニングするターゲット構造化プルーニングと,(2)各トレーニングバッチにおけるサンプルデータの構成を,異なるドメイン間での損失に基づいて動的に更新する動的バッチローディングという2つの重要な手法を用いる。
論文 参考訳(メタデータ) (2023-10-10T15:13:30Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
ニューラルネットワークパラメータの平均化は、2つの独立したモデルの知識の直感的な方法である。
フェデレートラーニングにおいて最も顕著に用いられている。
私たちは、単一グループやグループを平均化するモデルの性能を分析します。
論文 参考訳(メタデータ) (2023-07-13T09:39:10Z) - Masked Image Modeling with Local Multi-Scale Reconstruction [54.91442074100597]
Masked Image Modeling (MIM) は自己教師付き表現学習において顕著な成功を収めている。
既存のMIMモデルはエンコーダの最上層でのみ再構成タスクを実行する。
そこで我々は,下層と上層がそれぞれ微細かつ粗大な監視信号を再構成する局所的マルチスケール再構成を設計する。
論文 参考訳(メタデータ) (2023-03-09T13:42:04Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Rethinking Transfer Learning for Medical Image Classification [2.9161778726049525]
事前訓練された深層モデルからの伝達学習(TL)は、現代の医用画像分類(MIC)における標準的実践である
本稿では,TruncatedTLという,適切なボトム層を再利用・微調整し,残りの層を直接破棄する,新たな戦略をこのファミリーに追加する。
これにより、他の微分TL法と比較して、優れたMIC性能だけでなく、効率的な推論のためのコンパクトモデルが得られる。
論文 参考訳(メタデータ) (2021-06-09T15:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。