Investigating Cost-Efficiency of LLM-Generated Training Data for Conversational Semantic Frame Analysis
- URL: http://arxiv.org/abs/2410.06550v1
- Date: Wed, 9 Oct 2024 05:15:13 GMT
- Title: Investigating Cost-Efficiency of LLM-Generated Training Data for Conversational Semantic Frame Analysis
- Authors: Shiho Matta, Yin Jou Huang, Fei Cheng, Hirokazu Kiyomaru, Yugo Murawaki,
- Abstract summary: We show how to balance the trade-off between the higher quality but more expensive human data and the lower quality yet substantially cheaper LLM-generated data.
Our experiments, conducted across various budget levels, reveal that optimal cost-efficiency is achieved by combining both human and LLM-generated data.
- Score: 18.44272589315175
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent studies have demonstrated that few-shot learning allows LLMs to generate training data for supervised models at a low cost. However, the quality of LLM-generated data may not entirely match that of human-labeled data. This raises a crucial question: how should one balance the trade-off between the higher quality but more expensive human data and the lower quality yet substantially cheaper LLM-generated data? In this paper, we synthesized training data for conversational semantic frame analysis using GPT-4 and examined how to allocate budgets optimally to achieve the best performance. Our experiments, conducted across various budget levels, reveal that optimal cost-efficiency is achieved by combining both human and LLM-generated data across a wide range of budget levels. Notably, as the budget decreases, a higher proportion of LLM-generated data becomes more preferable.
Related papers
- Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
Building effective Transformer-based large language models (LLMs) has recently become a research focus.
We compare models with different parameter sizes, context lengths, and attention head configurations in terms of model performance, computational cost, and memory cost.
Our studies show that, when processing sufficiently long sequences, a larger model with fewer attention heads can achieve a lower loss while incurring lower computational and memory costs.
arXiv Detail & Related papers (2025-03-12T17:50:42Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.
We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.
We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - Large Language Models for Market Research: A Data-augmentation Approach [3.3199591445531453]
Large Language Models (LLMs) have transformed artificial intelligence by excelling in complex natural language processing tasks.
Recent studies highlight a significant gap between LLM-generated and human data, with biases introduced when substituting between the two.
We propose a novel statistical data augmentation approach that efficiently integrates LLM-generated data with real data in conjoint analysis.
arXiv Detail & Related papers (2024-12-26T22:06:29Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Efficient Alignment of Large Language Models via Data Sampling [0.4915744683251149]
We propose an information theory-based methodology for efficient alignment by identifying a small high quality subset.
We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset.
arXiv Detail & Related papers (2024-11-15T19:36:15Z) - Compute-Constrained Data Selection [77.06528009072967]
We formalize the problem of data selection with a cost-aware utility function, and model the problem as trading off initial-selection cost for training gain.
We run a comprehensive sweep of experiments across multiple tasks, varying compute budget by scaling finetuning tokens, model sizes, and data selection compute.
arXiv Detail & Related papers (2024-10-21T17:11:21Z) - VickreyFeedback: Cost-efficient Data Construction for Reinforcement Learning from Human Feedback [2.07180164747172]
This paper addresses the cost-efficiency aspect of Reinforcement Learning from Human Feedback (RLHF)
RLHF leverages datasets of human preferences over outputs of large language models (LLM) to instill human expectations into LLMs.
We show that introducing an auction mechanism can play an essential role in enhancing the cost-efficiency of RLHF while maintaining satisfactory model performance.
arXiv Detail & Related papers (2024-09-27T03:15:07Z) - Improving Pretraining Data Using Perplexity Correlations [56.41097718862742]
We build a new statistical framework for data selection centered around estimates of perplexity-benchmark correlations.
In controlled pretraining experiments at the 160M parameter scale on 8 benchmarks, our approach outperforms DSIR on every benchmark.
arXiv Detail & Related papers (2024-09-09T17:23:29Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Regurgitative Training: The Value of Real Data in Training Large Language Models [1.2815904071470703]
We evaluate the implications of "regurgitative training" on LLM performance.
We find strong evidence that regurgitative training clearly handicaps the performance of LLMs.
We propose and evaluate three different strategies to mitigate the performance loss of regurgitative training.
arXiv Detail & Related papers (2024-07-03T18:42:55Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
Large Language Models (LLMs) have significantly boosted performance in natural language processing (NLP) tasks.
The deployment of high-performance LLMs incurs substantial costs, primarily due to the increased number of parameters aimed at enhancing model performance.
We introduce SMART, a novel framework designed to minimize the inference costs of NLP tasks while ensuring sufficient result quality.
arXiv Detail & Related papers (2024-03-11T17:45:47Z) - ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
Large Language models (LLMs) exhibit harmful social biases.
This work introduces a novel approach utilizing ChatGPT to generate synthetic training data.
arXiv Detail & Related papers (2024-02-19T01:28:48Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Towards Optimizing the Costs of LLM Usage [4.032848774697859]
We study optimization problems trading off the quality and costs, both theoretically and empirically.
We propose several deterministics for reducing tokens in a quality aware manner.
Our methods reduce costs by 40%- 90% while improving quality by 4%-7%.
arXiv Detail & Related papers (2024-01-29T16:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.