論文の概要: From Uncertainty to Trust: Kernel Dropout for AI-Powered Medical Predictions
- arxiv url: http://arxiv.org/abs/2404.10483v2
- Date: Sun, 02 Feb 2025 21:54:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:04:30.585004
- Title: From Uncertainty to Trust: Kernel Dropout for AI-Powered Medical Predictions
- Title(参考訳): 不確実性から信頼へ:AIによる医療予測のためのカーネルドロップアウト
- Authors: Ubaid Azam, Imran Razzak, Shelly Vishwakarma, Hakim Hacid, Dell Zhang, Shoaib Jameel,
- Abstract要約: 信頼に値する信頼を持ったAI駆動型医療予測は、医療アプリケーションにおけるAIの責任ある使用を保証するために不可欠である。
本稿では,これらの課題に対処する新しいアプローチを提案し,カーネルモデルを用いたベイジアンモンテカルロ・ドロップアウトモデルを提案する。
限られたデータであっても、信頼性が大幅に向上し、AI駆動型医療予測の信頼構築に向けた有望なステップを提供します。
- 参考スコア(独自算出の注目度): 14.672477787408887
- License:
- Abstract: AI-driven medical predictions with trustworthy confidence are essential for ensuring the responsible use of AI in healthcare applications. The growing capabilities of AI raise questions about their trustworthiness in healthcare, particularly due to opaque decision-making and limited data availability. This paper proposes a novel approach to address these challenges, introducing a Bayesian Monte Carlo Dropout model with kernel modelling. Our model is designed to enhance reliability on small medical datasets, a crucial barrier to the wider adoption of AI in healthcare. This model leverages existing language models for improved effectiveness and seamlessly integrates with current workflows. Extensive evaluations of public medical datasets showcase our model's superior performance across diverse tasks. We demonstrate significant improvements in reliability, even with limited data, offering a promising step towards building trust in AI-driven medical predictions and unlocking its potential to improve patient care.
- Abstract(参考訳): 信頼に値する信頼を持ったAI駆動型医療予測は、医療アプリケーションにおけるAIの責任ある使用を保証するために不可欠である。
AIの能力の増大は、医療における信頼性に関する疑問、特に不透明な意思決定と限られたデータ可用性のために提起される。
本稿では,これらの課題に対処する新しいアプローチを提案し,カーネルモデルを用いたベイジアンモンテカルロ・ドロップアウトモデルを提案する。
私たちのモデルは、小さな医療データセットの信頼性を高めるように設計されています。
このモデルは既存の言語モデルを利用して効率を改善し、現在のワークフローとシームレスに統合する。
公開医療データセットの大規模な評価は、さまざまなタスクにまたがる我々のモデルの優れたパフォーマンスを示す。
私たちは、限られたデータであっても、信頼性が大幅に向上し、AI駆動型医療予測への信頼の構築と、患者のケアを改善する可能性の解放に向けた有望なステップを提供します。
関連論文リスト
- Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
この章は、医療で信頼できるAIシステムを作るには、公平さ、説明可能性、プライバシーを慎重に考慮する必要があることを強調している。
AIによる公平な医療提供を保証するという課題は強調され、臨床予測モデルのバイアスを特定し緩和する方法が議論されている。
この議論は、ディープラーニングモデルのデータ漏洩からモデル説明に対する高度な攻撃に至るまで、医療AIシステムのプライバシ脆弱性の分析に進展している。
論文 参考訳(メタデータ) (2025-01-16T16:17:39Z) - Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
本稿では,医学的視覚的質問応答(VQA)モデルのための,パーソナライズド・フェデレーションド・ラーニング(pFL)手法を提案する。
提案手法では,学習可能なプロンプトをTransformerアーキテクチャに導入し,膨大な計算コストを伴わずに,多様な医療データセット上で効率的にトレーニングする。
論文 参考訳(メタデータ) (2024-10-23T00:31:17Z) - Detecting Bias and Enhancing Diagnostic Accuracy in Large Language Models for Healthcare [0.2302001830524133]
バイアスドAIによる医療アドバイスと誤診は患者の安全を脅かす可能性がある。
本研究では、医療における倫理的かつ正確なAIを促進するために設計された新しいリソースを紹介する。
論文 参考訳(メタデータ) (2024-10-09T06:00:05Z) - Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability [1.90365714903665]
本研究では,Bayesian Kolmogorov Arnold Networks(BKANs)と呼ばれる新しいフレームワークを提案する。
BKANはコルモゴロフ・アーノルドネットワークの表現能力とベイズ推定を組み合わせたものである。
提案手法は,予測信頼度と決定境界に関する有用な知見を提供し,予測精度の観点から従来のディープラーニングモデルより優れている。
論文 参考訳(メタデータ) (2024-08-05T10:38:34Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [23.36640449085249]
医学大言語モデル(Med-LLMs)の最近の進歩を辿る。
The wide-ranging application of Med-LLMs are investigated across various health domain。
公平性、説明責任、プライバシー、堅牢性を保証する上での課題について議論する。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - Integrating ChatGPT into Secure Hospital Networks: A Case Study on
Improving Radiology Report Analysis [1.3624495460189863]
本研究は,ChatGPTに類似したクラウドベースのAIを,放射線学報告を解析するためのセキュアなモデルに初めて適応させたものである。
コントラスト学習によるユニークな文レベルの知識蒸留手法を用いて,異常検出の精度を95%以上向上する。
論文 参考訳(メタデータ) (2024-02-14T18:02:24Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
エビデンスベースの医療は、医療の意思決定と実践を最大限に活用することで、医療の質を向上させることを約束する。
様々な情報源から得ることができる医学的証拠の急速な成長は、明らかな情報の収集、評価、合成に挑戦する。
大規模言語モデルによって実証された、生成AIの最近の進歩は、困難な作業の促進を約束する。
論文 参考訳(メタデータ) (2023-11-19T03:29:45Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。