論文の概要: Bahasa Harmony: A Comprehensive Dataset for Bahasa Text-to-Speech Synthesis with Discrete Codec Modeling of EnGen-TTS
- arxiv url: http://arxiv.org/abs/2410.06608v1
- Date: Wed, 9 Oct 2024 07:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:49:21.903134
- Title: Bahasa Harmony: A Comprehensive Dataset for Bahasa Text-to-Speech Synthesis with Discrete Codec Modeling of EnGen-TTS
- Title(参考訳): Bahasa Harmony: EnGen-TTSの離散コーデックモデリングによるバハサテキスト音声合成のための包括的データセット
- Authors: Onkar Kishor Susladkar, Vishesh Tripathi, Biddwan Ahmed,
- Abstract要約: 本研究では,包括的バハサテキスト音声データセットと,新しいTSモデルであるEnGen-TTSを紹介する。
提案したEnGen-TTSモデルは、確立されたベースラインよりも優れており、平均オピニオンスコア(MOS)は4.45$pm$ 0.13である。
この研究はバハサ TTS 技術の進歩であり、多様な言語応用に影響を及ぼす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This research introduces a comprehensive Bahasa text-to-speech (TTS) dataset and a novel TTS model, EnGen-TTS, designed to enhance the quality and versatility of synthetic speech in the Bahasa language. The dataset, spanning \textasciitilde55.0 hours and 52K audio recordings, integrates diverse textual sources, ensuring linguistic richness. A meticulous recording setup captures the nuances of Bahasa phonetics, employing professional equipment to ensure high-fidelity audio samples. Statistical analysis reveals the dataset's scale and diversity, laying the foundation for model training and evaluation. The proposed EnGen-TTS model performs better than established baselines, achieving a Mean Opinion Score (MOS) of 4.45 $\pm$ 0.13. Additionally, our investigation on real-time factor and model size highlights EnGen-TTS as a compelling choice, with efficient performance. This research marks a significant advancement in Bahasa TTS technology, with implications for diverse language applications. Link to Generated Samples: \url{https://bahasa-harmony-comp.vercel.app/}
- Abstract(参考訳): 本研究では,バハサ語における合成音声の品質と汎用性を高めるために,包括的バハサ音声合成データセットと新しいTSモデルであるEnGen-TTSを紹介する。
データセットは、textasciitilde55.0時間と52K音声記録にまたがっており、多様なテキストソースを統合し、言語的な豊かさを保証している。
微妙な録音装置はバハサの音声のニュアンスを捉え、プロの装置を使って高忠実度オーディオサンプルを確実にする。
統計分析はデータセットのスケールと多様性を明らかにし、モデルトレーニングと評価の基礎を築いた。
提案したEnGen-TTSモデルは、確立されたベースラインよりも優れており、平均オピニオンスコア(MOS)は4.45$\pm$ 0.13である。
さらに、実時間係数とモデルサイズに関する調査では、EnGen-TTSを効率的な性能で魅力的な選択として強調している。
この研究はバハサ TTS 技術の進歩であり、多様な言語応用に影響を及ぼす。
Link to Generated Samples: \url{https://bahasa-harmony-comp.vercel.app/}
関連論文リスト
- IndicVoices-R: Unlocking a Massive Multilingual Multi-speaker Speech Corpus for Scaling Indian TTS [0.9092013845117769]
IndicVoices-R (IV-R) は、ASRデータセットから派生したインド最大の多言語TSデータセットである。
IV-Rは、LJ、Speech LibriTTS、IndicTTSといったゴールドスタンダードのTSデータセットの品質と一致する。
私たちは、22の公用語すべてを対象とした最初のTSモデルをリリースします。
論文 参考訳(メタデータ) (2024-09-09T06:28:47Z) - Synth4Kws: Synthesized Speech for User Defined Keyword Spotting in Low Resource Environments [8.103855990028842]
テキスト・トゥ・スピーチ(TTS)合成データをカスタムKWSに活用するフレームワークであるSynth4Kwsを紹介する。
TTSフレーズの多様性が増大し,発話サンプリングが単調にモデル性能を向上することがわかった。
我々の実験は英語と単一単語の発話に基づいているが、この結果はi18n言語に一般化されている。
論文 参考訳(メタデータ) (2024-07-23T21:05:44Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
本稿では,最近のSSLベースの多言語TSシステムであるZMM-TTSの言語適応性について検討する。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-06-13T08:16:52Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - Translation-Enhanced Multilingual Text-to-Image Generation [61.41730893884428]
テキスト・ツー・イメージ・ジェネレーション(TTI)の研究は、現在でも主に英語に焦点を当てている。
そこで本研究では,多言語TTIとニューラルマシン翻訳(NMT)のブートストラップmTTIシステムへの応用について検討する。
我々は,mTTIフレームワーク内で多言語テキスト知識を重み付け,統合する新しいパラメータ効率アプローチであるEnsemble Adapter (EnsAd)を提案する。
論文 参考訳(メタデータ) (2023-05-30T17:03:52Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - Towards Building Text-To-Speech Systems for the Next Billion Users [18.290165216270452]
そこで我々は,ドラヴィダ語とインド・アーリア語に対する音響モデル,ボコーダ,補足的損失関数,訓練スケジュール,話者および言語多様性の選択について検討した。
我々は,13言語を対象としたTSモデルをトレーニングし,評価し,各言語における既存のモデルを大幅に改善するモデルを見出した。
論文 参考訳(メタデータ) (2022-11-17T13:59:34Z) - Speech-to-Speech Translation For A Real-world Unwritten Language [62.414304258701804]
本研究では、ある言語から別の言語に音声を翻訳する音声音声翻訳(S2ST)について研究する。
我々は、トレーニングデータ収集、モデル選択、ベンチマークデータセットのリリースからエンドツーエンドのソリューションを提示します。
論文 参考訳(メタデータ) (2022-11-11T20:21:38Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
本稿では,テキスト音声合成(TTS)モデルのための多言語共同学習フレームワークであるVirtuosoを提案する。
様々な音声およびテキストデータからTSモデルをトレーニングするために、教師なし(TTSおよびASRデータ)と教師なし(非教師なし)のデータセットを扱うように、異なるトレーニングスキームが設計されている。
実験により、Virtuosoで訓練された多言語TSモデルは、見かけの言語におけるベースラインモデルよりも、自然性や知性に優れることが示された。
論文 参考訳(メタデータ) (2022-10-27T14:09:48Z) - A Survey on Neural Speech Synthesis [110.39292386792555]
テキスト・トゥ・スピーチ(TTS)は、音声、言語、機械学習のコミュニティにおけるホットな研究テーマである。
我々は、現在の研究と今後のトレンドをよく理解することを目的として、ニューラルTSに関する包括的な調査を行っている。
我々は、テキスト分析、音響モデル、ボコーダなど、ニューラルネットワークの重要なコンポーネントと、高速TS、低リソースTS、堅牢TS、表現型TS、適応型TSなど、いくつかの先進的なトピックに焦点を当てる。
論文 参考訳(メタデータ) (2021-06-29T16:50:51Z) - Bootstrap an end-to-end ASR system by multilingual training, transfer
learning, text-to-text mapping and synthetic audio [8.510792628268824]
限られたデータリソースでの音声認識のブートストラップは、長い間活発な研究領域だった。
本稿では,低資源環境下でRNN-Transducerに基づく音声認識システム(ASR)をブートストラップする様々な手法の有効性について検討する。
実験では,ASR後のテキスト・テキスト・マッピングと合成音声を用いた多言語モデルからの変換学習が付加的な改善をもたらすことを示した。
論文 参考訳(メタデータ) (2020-11-25T13:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。