Task-oriented Time Series Imputation Evaluation via Generalized Representers
- URL: http://arxiv.org/abs/2410.06652v2
- Date: Thu, 10 Oct 2024 04:16:14 GMT
- Title: Task-oriented Time Series Imputation Evaluation via Generalized Representers
- Authors: Zhixian Wang, Linxiao Yang, Liang Sun, Qingsong Wen, Yi Wang,
- Abstract summary: Time series analysis is widely used in many fields such as power energy, economics, and transportation.
This paper proposes an efficient downstream task-oriented time series imputation evaluation approach.
- Score: 23.53722963890861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series analysis is widely used in many fields such as power energy, economics, and transportation, including different tasks such as forecasting, anomaly detection, classification, etc. Missing values are widely observed in these tasks, and often leading to unpredictable negative effects on existing methods, hindering their further application. In response to this situation, existing time series imputation methods mainly focus on restoring sequences based on their data characteristics, while ignoring the performance of the restored sequences in downstream tasks. Considering different requirements of downstream tasks (e.g., forecasting), this paper proposes an efficient downstream task-oriented time series imputation evaluation approach. By combining time series imputation with neural network models used for downstream tasks, the gain of different imputation strategies on downstream tasks is estimated without retraining, and the most favorable imputation value for downstream tasks is given by combining different imputation strategies according to the estimated gain.
Related papers
- TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
arXiv Detail & Related papers (2024-06-18T16:07:33Z) - Deep Learning for Multivariate Time Series Imputation: A Survey [36.72913706617057]
In this paper, we conduct a comprehensive survey on the recently proposed deep learning imputation methods.
We propose a taxonomy for the reviewed methods, and then provide a structured review of these methods by highlighting their strengths and limitations.
We also conduct empirical experiments to study different methods and compare their enhancement for downstream tasks.
arXiv Detail & Related papers (2024-02-06T15:03:53Z) - Filling out the missing gaps: Time Series Imputation with
Semi-Supervised Learning [7.8379910349669]
We propose a semi-supervised imputation method, ST-Impute, that uses both unlabeled data along with downstream task's labeled data.
ST-Impute is based on sparse self-attention and trains on tasks that mimic the imputation process.
arXiv Detail & Related papers (2023-04-09T16:38:47Z) - A Comprehensive Survey of Regression Based Loss Functions for Time
Series Forecasting [0.0]
We have summarized 14 well-known regression loss functions commonly used for time series forecasting.
Our code is available at GitHub: https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow.
arXiv Detail & Related papers (2022-11-05T23:06:25Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
We propose new constrained pretext tasks to learn object level normality patterns.
Our approach consists in learning a mapping between down-scaled visual queries and their corresponding normal appearance and motion characteristics.
Experiments on several benchmark datasets demonstrate the effectiveness of our approach to localize and track anomalies.
arXiv Detail & Related papers (2022-10-27T19:45:12Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - NRTSI: Non-Recurrent Time Series Imputation for Irregularly-sampled Data [14.343059464246425]
Time series imputation is a fundamental task for understanding time series with missing data.
We propose a novel imputation model called NRTSI without any recurrent modules.
NRTSI can easily handle irregularly-sampled data, perform multiple-mode imputation, and handle the scenario where dimensions are partially observed.
arXiv Detail & Related papers (2021-02-05T18:41:25Z) - Temporally Correlated Task Scheduling for Sequence Learning [143.70523777803723]
In many applications, a sequence learning task is usually associated with multiple temporally correlated auxiliary tasks.
We introduce a learnable scheduler to sequence learning, which can adaptively select auxiliary tasks for training.
Our method significantly improves the performance of simultaneous machine translation and stock trend forecasting.
arXiv Detail & Related papers (2020-07-10T10:28:54Z) - Clinical Risk Prediction with Temporal Probabilistic Asymmetric
Multi-Task Learning [80.66108902283388]
Multi-task learning methods should be used with caution for safety-critical applications, such as clinical risk prediction.
Existing asymmetric multi-task learning methods tackle this negative transfer problem by performing knowledge transfer from tasks with low loss to tasks with high loss.
We propose a novel temporal asymmetric multi-task learning model that performs knowledge transfer from certain tasks/timesteps to relevant uncertain tasks, based on feature-level uncertainty.
arXiv Detail & Related papers (2020-06-23T06:01:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.