A Comprehensive Survey of Regression Based Loss Functions for Time
Series Forecasting
- URL: http://arxiv.org/abs/2211.02989v1
- Date: Sat, 5 Nov 2022 23:06:25 GMT
- Title: A Comprehensive Survey of Regression Based Loss Functions for Time
Series Forecasting
- Authors: Aryan Jadon, Avinash Patil, Shruti Jadon
- Abstract summary: We have summarized 14 well-known regression loss functions commonly used for time series forecasting.
Our code is available at GitHub: https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time Series Forecasting has been an active area of research due to its many
applications ranging from network usage prediction, resource allocation,
anomaly detection, and predictive maintenance. Numerous publications published
in the last five years have proposed diverse sets of objective loss functions
to address cases such as biased data, long-term forecasting, multicollinear
features, etc. In this paper, we have summarized 14 well-known regression loss
functions commonly used for time series forecasting and listed out the
circumstances where their application can aid in faster and better model
convergence. We have also demonstrated how certain categories of loss functions
perform well across all data sets and can be considered as a baseline objective
function in circumstances where the distribution of the data is unknown. Our
code is available at GitHub:
https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow.
Related papers
- Task-oriented Time Series Imputation Evaluation via Generalized Representers [23.53722963890861]
Time series analysis is widely used in many fields such as power energy, economics, and transportation.
This paper proposes an efficient downstream task-oriented time series imputation evaluation approach.
arXiv Detail & Related papers (2024-10-09T08:04:48Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - Time Series Forecasting Models Copy the Past: How to Mitigate [24.397660153755997]
In the presence of noise and uncertainty, neural network models tend to replicate the last observed value of the time series.
We propose a regularization term penalizing the replication of previously seen values.
Our results indicate that the regularization term mitigates to some extent the aforementioned problem and gives rise to more robust models.
arXiv Detail & Related papers (2022-07-27T10:39:00Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
This paper presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR)
EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), is suitable for nonstationary and heteroscedastic time series data, and can be applied on top of any forecasting model.
The results demonstrate that EnCQR outperforms models based only on quantile regression or conformal prediction, and it provides sharper, more informative, and valid PIs.
arXiv Detail & Related papers (2022-02-17T16:54:20Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
In finance, imputation of missing returns may be applied prior to training a portfolio optimization model.
There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data.
We propose a Bayesian posterior consensus distribution which optimally controls the variance and look-ahead-bias trade-off in the imputation.
arXiv Detail & Related papers (2021-02-25T09:05:35Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
Time series data imputation is a well-studied problem with different categories of methods.
Time series methods based on deep learning have made progress with the usage of models like RNN.
We will review and discuss their model architectures, their pros and cons as well as their effects to show the development of the time series imputation methods.
arXiv Detail & Related papers (2020-11-23T11:57:27Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.