AI, Climate, and Transparency: Operationalizing and Improving the AI Act
- URL: http://arxiv.org/abs/2409.07471v1
- Date: Wed, 28 Aug 2024 07:57:39 GMT
- Title: AI, Climate, and Transparency: Operationalizing and Improving the AI Act
- Authors: Nicolas Alder, Kai Ebert, Ralf Herbrich, Philipp Hacker,
- Abstract summary: This paper critically examines the AI Act's provisions on climate-related transparency.
We identify key shortcomings, including the exclusion of energy consumption during AI inference.
We propose a novel interpretation to bring inference-related energy use back within the Act's scope.
- Score: 2.874893537471256
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper critically examines the AI Act's provisions on climate-related transparency, highlighting significant gaps and challenges in its implementation. We identify key shortcomings, including the exclusion of energy consumption during AI inference, the lack of coverage for indirect greenhouse gas emissions from AI applications, and the lack of standard reporting methodology. The paper proposes a novel interpretation to bring inference-related energy use back within the Act's scope and advocates for public access to climate-related disclosures to foster market accountability and public scrutiny. Cumulative server level energy reporting is recommended as the most suitable method. We also suggests broader policy changes, including sustainability risk assessments and renewable energy targets, to better address AI's environmental impact.
Related papers
- AI, Climate, and Regulation: From Data Centers to the AI Act [2.874893537471256]
We aim to provide guidance on the climate-related regulation for data centers and AI specifically.
We propose a specific interpretation of the AI Act to bring reporting on the previously unadressed energy consumption from AI inferences back into the scope.
We argue for an interpretation of the AI Act that includes environmental concerns in the mandatory risk assessment.
arXiv Detail & Related papers (2024-10-09T08:43:53Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
Recent surge of interest in machine learning has sparked a trend towards large-scale adoption of AI/ML.
There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle.
This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations.
arXiv Detail & Related papers (2024-05-22T21:19:35Z) - The Role of Intelligent Transportation Systems and Artificial
Intelligence in Energy Efficiency and Emission Reduction [4.847470451539329]
We explore the role of intelligent transportation systems (ITSs) and artificial intelligence (AI) in future enhanced energy and emission reduction (EER)
More specifically, we discuss the impact of sensors at different levels of ITS on improving EER.
We also investigate the potential networking connections in ITSs and provide an illustration of how they improve EER.
arXiv Detail & Related papers (2024-01-25T23:07:32Z) - Recommendations for public action towards sustainable generative AI
systems [0.0]
This paper presents the components of the environmental footprint of generative AI.
It highlights the massive CO2 emissions and water consumption associated with training large language models.
The paper also explores the factors and characteristics of models that have an influence on their environmental footprint.
arXiv Detail & Related papers (2024-01-04T08:55:53Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
We focus on text summarization, a common NLP task largely overlooked by the responsible AI community.
We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020-2022.
We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals.
arXiv Detail & Related papers (2023-11-18T15:35:36Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - Sustainable AI Regulation [3.0821115746307663]
The ICT sector contributes up to 3.9 percent of global greenhouse gas emissions.
The carbon footprint water consumption of AI, especially large-scale generative models like GPT-4, raise significant sustainability concerns.
The paper suggests a multi-faceted approach to achieve sustainable AI regulation.
arXiv Detail & Related papers (2023-06-01T02:20:48Z) - Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization [57.88118988775461]
We propose PROjected Feasibility (PROF) to enforce convex operational constraints within neural policies.
We demonstrate PROF on two applications: energy-efficient building operation and inverter control.
arXiv Detail & Related papers (2021-05-19T01:58:10Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.