論文の概要: CATCH: Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs
- arxiv url: http://arxiv.org/abs/2411.12713v1
- Date: Tue, 19 Nov 2024 18:27:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:55.559284
- Title: CATCH: Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs
- Title(参考訳): CATCH:LVLMにおける幻覚緩和のための相補的適応型トークンレベルのコントラストデコーディング
- Authors: Zhehan Kan, Ce Zhang, Zihan Liao, Yapeng Tian, Wenming Yang, Junyuan Xiao, Xu Li, Dongmei Jiang, Yaowei Wang, Qingmin Liao,
- Abstract要約: CATCHは、未解決のシナリオにおいて、きめ細かい特徴知覚と累積幻覚を減少させる視覚的欠陥に関連する問題に対処する。
これは、特定のデータや事前知識を必要とせず、様々な視覚的質問応答タスクに適用でき、追加のトレーニングを必要とせず、新しいタスクにしっかりと一般化する。
- 参考スコア(独自算出の注目度): 74.36850397755572
- License:
- Abstract: Large Vision-Language Model (LVLM) systems have demonstrated impressive vision-language reasoning capabilities but suffer from pervasive and severe hallucination issues, posing significant risks in critical domains such as healthcare and autonomous systems. Despite previous efforts to mitigate hallucinations, a persistent issue remains: visual defect from vision-language misalignment, creating a bottleneck in visual processing capacity. To address this challenge, we develop Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs (CATCH), based on the Information Bottleneck theory. CATCH introduces Complementary Visual Decoupling (CVD) for visual information separation, Non-Visual Screening (NVS) for hallucination detection, and Adaptive Token-level Contrastive Decoding (ATCD) for hallucination mitigation. CATCH addresses issues related to visual defects that cause diminished fine-grained feature perception and cumulative hallucinations in open-ended scenarios. It is applicable to various visual question-answering tasks without requiring any specific data or prior knowledge, and generalizes robustly to new tasks without additional training, opening new possibilities for advancing LVLM in various challenging applications.
- Abstract(参考訳): LVLM(Large Vision-Language Model)システムは目覚しい視覚言語推論能力を示しているが、広範で深刻な幻覚障害に悩まされており、医療や自律システムといった重要な領域において重大なリスクを生じさせている。
幻覚を緩和する以前の努力にもかかわらず、永続的な問題は、視覚言語による誤認識からの視覚的欠陥であり、視覚処理能力のボトルネックを生み出すことである。
この課題に対処するために,情報ボトルネック理論に基づくLVLM(CATCH)における幻覚の緩和のためのコントラストデコーディングを開発する。
CATCHは視覚情報分離のための補完的視覚デカップリング(CVD)、幻覚検出のための非視覚スクリーニング(NVS)、幻覚軽減のための適応的トークンレベルコントラストデコーディング(ATCD)を導入している。
CATCHは、未解決のシナリオにおいて、きめ細かい特徴知覚と累積幻覚を減少させる視覚的欠陥に関連する問題に対処する。
これは、特定のデータや事前知識を必要とせず、様々な視覚的質問応答タスクに適用可能であり、追加のトレーニングなしで新しいタスクにしっかりと一般化し、様々な挑戦的なアプリケーションにおいてLVLMを前進させる新たな可能性を開く。
関連論文リスト
- Mitigating Object Hallucination via Concentric Causal Attention [71.27325347912823]
物体の幻覚は回転位置と密接に結びついていることを示す。
RoPEは、広く採用されている位置依存モデリング設計である。
簡易かつ効果的な位置アライメント戦略であるConcentric Causal Attention (CCA)を提案する。
論文 参考訳(メタデータ) (2024-10-21T11:54:53Z) - Reducing Hallucinations in Vision-Language Models via Latent Space Steering [34.1755878632361]
幻覚は、アプリケーションに大規模な視覚言語モデル(LVLM)を配置する上での課題である。
本稿では,視覚的特徴の安定性を高めるために,視覚とテクスチュアル・インターベンション(VTI, Visual and Textual Intervention)を提案する。
論文 参考訳(メタデータ) (2024-10-21T08:42:30Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
大型視覚モデル(LVLM)における幻覚は、視覚入力に表示されない物体を生成するという重要な課題である。
最近の研究では、幻覚は視覚的な入力の理解の欠如に起因しているが、より根本的な問題は無視されている。
本稿では,LVLMの幻覚をアーキテクチャの観点から再検討し,視覚エンコーダ(機能抽出)とモーダルアライメントモジュール(機能デカップリング)の主な原因について検討する。
論文 参考訳(メタデータ) (2024-10-09T11:46:32Z) - Self-Introspective Decoding: Alleviating Hallucinations for Large Vision-Language Models [30.26685485474035]
LVLM(Large Vision-Language Models)は近年急速に進歩している。
幻覚問題として知られる問題は、重大なボトルネックとして浮上している。
自己検査復号法(Self-Introspective Decoding, SID)を提案する。
論文 参考訳(メタデータ) (2024-08-04T13:50:17Z) - Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs [52.497823009176074]
LVLM(Large Vision-Language Models)はしばしば、幻覚として知られる事実情報を誤認する応答を生成する。
視覚的知覚の向上とLVLMの推論能力の向上を目的とした学習自由度手法であるVisual Description Grounded Decoding (VDGD)を紹介した。
論文 参考訳(メタデータ) (2024-05-24T16:21:59Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
本稿では,LVLM推論における幻覚の低減を目的とした,命令コントラストデコーディング(ICD)手法を提案する。
本手法は,マルチモーダル核融合モジュールにおいて,外乱指示が幻覚を著しく悪化させるという観察に着想を得たものである。
論文 参考訳(メタデータ) (2024-03-27T16:04:47Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
本稿では,オリジナルおよび歪曲された視覚入力から出力分布を対比する,シンプルでトレーニングのないVisual Contrastive Decoding(VCD)を紹介する。
提案したVCDは, 対象幻覚の2つの重要な原因である, 統計的偏見と単調な先行性に対する信頼度を効果的に低減する。
実験の結果,付加的なトレーニングや外部ツールの使用がなければ,異なるLVLMファミリーにおける物体幻覚の問題を著しく軽減できることがわかった。
論文 参考訳(メタデータ) (2023-11-28T16:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。