論文の概要: A Trilogy of AI Safety Frameworks: Paths from Facts and Knowledge Gaps to Reliable Predictions and New Knowledge
- arxiv url: http://arxiv.org/abs/2410.06946v1
- Date: Sun, 13 Oct 2024 17:35:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:27:23.548022
- Title: A Trilogy of AI Safety Frameworks: Paths from Facts and Knowledge Gaps to Reliable Predictions and New Knowledge
- Title(参考訳): AI安全フレームワークのトリオロジー: ファクトと知識ギャップから信頼性のある予測と新しい知識への道
- Authors: Simon Kasif,
- Abstract要約: AI安全は、AIコミュニティ内外の多くの科学者にとって重要な最前線の関心事となっている。
機械学習システムには、生存リスクから人間の存在、深い偽造、偏見まで、すぐに、長期にわたって予測されるリスクが数多く存在する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI Safety has become a vital front-line concern of many scientists within and outside the AI community. There are many immediate and long term anticipated risks that range from existential risk to human existence to deep fakes and bias in machine learning systems [1-5]. In this paper, we reduce the full scope and immense complexity of AI safety concerns to a trilogy of three important but tractable opportunities for advances that have the short-term potential to improve AI safety and reliability without reducing AI innovation in critical domains. In this perspective, we discuss this vision based on several case studies that already produced proofs of concept in critical ML applications in biomedical science.
- Abstract(参考訳): AI安全は、AIコミュニティ内外の多くの科学者にとって重要な最前線の関心事となっている。
機械学習システムには、生存リスクから人間の存在まで、深い偽造や偏見まで、すぐに、長期にわたって予想されるリスクが数多くあります [1-5]。
本稿では,AIの安全性と信頼性を短期的に向上させる可能性を持つ先進国において,重要な領域におけるAIのイノベーションを減少させることなく,AIの安全性と信頼性を向上させるための重要な3つの機会の3部作に,AIの安全性に関する全範囲と膨大な複雑さを還元する。
本稿では,このビジョンを,バイオメディカルサイエンスにおける重要なML応用における概念実証をすでに作成しているいくつかのケーススタディに基づいて論じる。
関連論文リスト
- Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
論文 参考訳(メタデータ) (2024-08-23T09:33:48Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - AI Safety: A Climb To Armageddon? [0.0]
本稿では,最適化,緩和,ホロリズムの3つの対応戦略について検討する。
この議論の驚くべき堅牢性は、AIの安全性に関するコア前提の再検討を迫られる。
論文 参考訳(メタデータ) (2024-05-30T08:41:54Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - When to Trust AI: Advances and Challenges for Certification of Neural
Networks [26.890905486708117]
現実世界のアプリケーションにAI技術の早期採用は問題なく行われていない。
本稿では,AI決定の安全性を確保するために開発された技術の概要を紹介する。
論文 参考訳(メタデータ) (2023-09-20T10:31:09Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Current and Near-Term AI as a Potential Existential Risk Factor [5.1806669555925975]
我々は、現在および短期的な人工知能技術が、現実的なリスクに寄与する可能性があるという考えを問題視する。
我々は、すでに文書化されているAIの効果が、実在するリスク要因として機能する、という仮説を提案する。
私たちの主な貢献は、潜在的なAIリスク要因とそれら間の因果関係の展示です。
論文 参考訳(メタデータ) (2022-09-21T18:56:14Z) - X-Risk Analysis for AI Research [24.78742908726579]
我々は、AI x-riskの分析方法のガイドを提供する。
まず、今日のシステムの安全性についてレビューする。
次に,今後のシステムの安全性に長期的影響を与える戦略について議論する。
論文 参考訳(メタデータ) (2022-06-13T00:22:50Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。