論文の概要: Diffusion Density Estimators
- arxiv url: http://arxiv.org/abs/2410.06986v1
- Date: Wed, 9 Oct 2024 15:21:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:07:19.433962
- Title: Diffusion Density Estimators
- Title(参考訳): 拡散密度推定器
- Authors: Akhil Premkumar,
- Abstract要約: 本稿では,フローを解くことなくログ密度を計算できる新しい並列化手法を提案する。
我々のアプローチは、モンテカルロによる経路積分を、拡散モデルのシミュレーション不要な訓練と同一の方法で推定することに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the use of diffusion models as neural density estimators. The current approach to this problem involves converting the generative process to a smooth flow, known as the Probability Flow ODE. The log density at a given sample can be obtained by solving the ODE with a black-box solver. We introduce a new, highly parallelizable method that computes log densities without the need to solve a flow. Our approach is based on estimating a path integral by Monte Carlo, in a manner identical to the simulation-free training of diffusion models. We also study how different training parameters affect the accuracy of the density calculation, and offer insights into how these models can be made more scalable and efficient.
- Abstract(参考訳): 神経密度推定器としての拡散モデルについて検討する。
この問題に対する現在のアプローチは、生成プロセスを、確率フローODE(Probability Flow ODE)と呼ばれる滑らかなフローに変換することである。
与えられたサンプルのログ密度は、ブラックボックスソルバでODEを解くことで得られる。
本稿では,フローを解くことなくログ密度を計算できる新しい並列化手法を提案する。
我々のアプローチは、モンテカルロによる経路積分を、拡散モデルのシミュレーション不要な訓練と同一の方法で推定することに基づいている。
また、異なるトレーニングパラメータが密度計算の精度にどのように影響するかを調べ、これらのモデルをよりスケーラブルで効率的なものにする方法についての洞察を提供する。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - New algorithms for sampling and diffusion models [0.0]
本稿では,未知分布を持つ拡散生成モデルのための新しいサンプリング手法と新しいアルゴリズムを提案する。
我々のアプローチは、拡散生成モデルにおいて広く採用されている逆拡散過程の概念に着想を得たものである。
論文 参考訳(メタデータ) (2024-06-14T02:30:04Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
本研究では,ソボレフ法則の正則化に基づく非パラメトリック密度推定法を提案する。
この方法は統計的に一貫したものであり、帰納的検証モデルを明確かつ一貫したものにしている。
論文 参考訳(メタデータ) (2023-07-25T18:47:53Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
確率の流れを記述した常微分方程式の統合に基づく代替スキームを導入する。
力学とは異なり、この方程式は決定論的に初期密度からのサンプルを後から溶液のサンプルにプッシュする。
我々のアプローチは、生成モデルのためのスコアベース拡散の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2022-06-09T17:37:09Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
ワッサーシュタイン勾配流を近似するスケーラブルなスキームを導入する。
我々のアプローチは、JKOステップを識別するために、入力ニューラルネットワーク(ICNN)に依存しています。
その結果、勾配拡散の各ステップで測定値からサンプリングし、その密度を計算することができる。
論文 参考訳(メタデータ) (2021-06-01T19:21:48Z) - Conditional Density Estimation via Weighted Logistic Regressions [0.30458514384586394]
非均一プロセスモデルの一般密度と可能性関数の関連性を示すパラメトリック条件密度推定法を提案する。
最大推定値は重み付けされたロジスティック回帰によって得ることができ、ブロックワイズ交互化スキームと局所ケースコントロールサンプリングを組み合わせることで計算を著しく緩和することができる。
論文 参考訳(メタデータ) (2020-10-21T11:08:25Z) - Learning Generative Models using Denoising Density Estimators [29.068491722778827]
縮退密度推定器(DDE)に基づく新しい生成モデルを提案する。
我々の主な貢献は、KL分割を直接最小化することで生成モデルを得る新しい技術である。
実験結果から, 生成モデル学習における密度推定と競争性能が大幅に向上した。
論文 参考訳(メタデータ) (2020-01-08T20:30:40Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。