論文の概要: A Gentle Introduction and Tutorial on Deep Generative Models in Transportation Research
- arxiv url: http://arxiv.org/abs/2410.07066v2
- Date: Thu, 10 Oct 2024 19:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 22:47:07.087042
- Title: A Gentle Introduction and Tutorial on Deep Generative Models in Transportation Research
- Title(参考訳): 交通研究における深部生成モデル入門とチュートリアル
- Authors: Seongjin Choi, Zhixiong Jin, Seung Woo Ham, Jiwon Kim, Lijun Sun,
- Abstract要約: 近年、DGM(Deep Generative Models)は急速に進歩し、様々な分野において重要なツールとなっている。
本稿では,DGMの総合的な紹介とチュートリアルについて紹介する。
これは生成モデルの概要から始まり、続いて基本モデルの詳細な説明、文献の体系的なレビュー、実装を支援するための実践的なチュートリアルコードなどが続く。
- 参考スコア(独自算出の注目度): 21.66278922813198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Generative Models (DGMs) have rapidly advanced in recent years, becoming essential tools in various fields due to their ability to learn complex data distributions and generate synthetic data. Their importance in transportation research is increasingly recognized, particularly for applications like traffic data generation, prediction, and feature extraction. This paper offers a comprehensive introduction and tutorial on DGMs, with a focus on their applications in transportation. It begins with an overview of generative models, followed by detailed explanations of fundamental models, a systematic review of the literature, and practical tutorial code to aid implementation. The paper also discusses current challenges and opportunities, highlighting how these models can be effectively utilized and further developed in transportation research. This paper serves as a valuable reference, guiding researchers and practitioners from foundational knowledge to advanced applications of DGMs in transportation research.
- Abstract(参考訳): 近年, 深部生成モデル (DGM) は, 複雑なデータ分布を学習し, 合成データを生成する能力から, 様々な分野で重要なツールとなっている。
交通研究におけるその重要性は、特に交通データ生成、予測、特徴抽出といった応用において、ますます認識されている。
本稿では,DGMの総合的な紹介とチュートリアルについて紹介する。
これは生成モデルの概要から始まり、続いて基本モデルの詳細な説明、文献の体系的なレビュー、実装を支援するための実践的なチュートリアルコードなどが続く。
また,輸送研究においてこれらのモデルを効果的に活用し,さらに発展させる方法について,現状の課題と機会についても論じる。
本論文は, 基礎知識からDGMの先進的応用まで, 研究者や実践者を導く上で, 貴重な参考資料として機能する。
関連論文リスト
- Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
本稿では,PDF文書を主データ源とする検索拡張生成システム(RAG)の開発経験報告について述べる。
RAGアーキテクチャは、Large Language Models (LLM) の生成能力と情報検索の精度を組み合わせたものである。
この研究の実際的な意味は、様々な分野における生成AIシステムの信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-21T12:21:49Z) - Deep Learning based Visually Rich Document Content Understanding: A Survey [8.788354139674789]
ビジュアルリッチドキュメント(VRD)は、学術、金融、医療、マーケティングにおいて不可欠である。
ディープラーニングはこのプロセスに革命をもたらし、マルチモーダル情報ビジョン、テキスト、レイアウトを活用するモデルを導入した。
これらのモデルは、様々な下流タスクで最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-08-02T14:19:34Z) - Human-artificial intelligence teaming for scientific information extraction from data-driven additive manufacturing research using large language models [3.0061386772253784]
近年,データ駆動型アダプティブ・マニュファクチャリング(AM)の研究は大きな成功を収めている。
この結果、多くの科学文献が誕生した。
これらの作品から科学的情報を取り出すにはかなりの労力と時間を要する。
本稿では,AMとAIの専門家が共同で,データ駆動型AM文献から科学情報を継続的に抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-26T15:43:52Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
この調査は、ジェネレーティブモデル(Gen-RecSys)を用いたレコメンデーションシステムにおける重要な進歩を結びつける。
対話駆動生成モデル、自然言語レコメンデーションのための大規模言語モデル(LLM)とテキストデータの使用、RSにおける画像やビデオの生成と処理のためのマルチモーダルモデルの統合。
我々の研究は、Gen-RecSysの影響と害を評価するために必要なパラダイムを強調し、オープンな課題を特定します。
論文 参考訳(メタデータ) (2024-03-31T06:57:57Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
知識追跡は、学生の行動データ分析の基本的なタスクの1つである。
我々は、異なる技術経路を持つ3種類の基本KTモデルを示す。
この急速に成長する分野における今後の研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-05-06T13:05:55Z) - An Introduction to Deep Generative Modeling [8.909115457491522]
深層生成モデル(dgm)は、複雑な高次元確率分布を近似するために多くの隠れ層を訓練したニューラルネットワークである。
DGMの紹介と3つの最もポピュラーなアプローチをモデリングするためのフレームワークを提供します。
私たちの目標は、読者がこの急成長する研究領域に貢献できるようにすることです。
論文 参考訳(メタデータ) (2021-03-09T02:19:06Z) - From Data to Actions in Intelligent Transportation Systems: a
Prescription of Functional Requirements for Model Actionability [10.27718355111707]
この研究は、多種多様なソースから得られたデータが、その資産やシステム、プロセスの効率的な運用のために、データ駆動モデルを学び、適応するためにどのように使用できるかを説明することを目的としている。
ITSのデータモデリングパイプラインでは、データ融合、適応学習、モデル評価という3つの複合ステージに対して、特性、エンジニアリング要件、本質的な課題を定義します。
論文 参考訳(メタデータ) (2020-02-06T12:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。