MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses
- URL: http://arxiv.org/abs/2410.07076v3
- Date: Mon, 28 Oct 2024 16:39:35 GMT
- Title: MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses
- Authors: Zonglin Yang, Wanhao Liu, Ben Gao, Tong Xie, Yuqiang Li, Wanli Ouyang, Soujanya Poria, Erik Cambria, Dongzhan Zhou,
- Abstract summary: We propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations.
To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024.
Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis.
The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus.
- Score: 72.39144388083712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific discovery contributes largely to human society's prosperity, and recent progress shows that LLMs could potentially catalyze this process. However, it is still unclear whether LLMs can discover novel and valid hypotheses in chemistry. In this work, we investigate this central research question: Can LLMs automatically discover novel and valid chemistry research hypotheses given only a chemistry research background (consisting of a research question and/or a background survey), without limitation on the domain of the research question? After extensive discussions with chemistry experts, we propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations. With this key insight, we break the central question into three smaller fundamental questions. In brief, they are: (1) given a background question, whether LLMs can retrieve good inspirations; (2) with background and inspirations, whether LLMs can lead to hypothesis; and (3) whether LLMs can identify good hypotheses to rank them higher. To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024 (all papers are only available online since 2024). Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis. The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus consisting the ground truth inspiration papers, with LLMs trained with data up to 2023. We also develop an LLM-based multi-agent framework that leverages the assumption, consisting of three stages reflecting the three smaller questions. The proposed method can rediscover many hypotheses with very high similarity with the ground truth ones, covering the main innovations.
Related papers
- Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
Large language models (LLMs) can identify novel research directions by analyzing existing knowledge.
LLMs are prone to generating hallucinations'', outputs that are plausible-sounding but factually incorrect.
We propose KG-CoI, a system that enhances LLM hypothesis generation by integrating external, structured knowledge from knowledge graphs.
arXiv Detail & Related papers (2024-11-04T18:50:00Z) - ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models [62.37850540570268]
Existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals.
ChemEval identifies 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks.
Results show that while general LLMs excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge.
arXiv Detail & Related papers (2024-09-21T02:50:43Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - Mapping the Increasing Use of LLMs in Scientific Papers [99.67983375899719]
We conduct the first systematic, large-scale analysis across 950,965 papers published between January 2020 and February 2024 on the arXiv, bioRxiv, and Nature portfolio journals.
Our findings reveal a steady increase in LLM usage, with the largest and fastest growth observed in Computer Science papers.
arXiv Detail & Related papers (2024-04-01T17:45:15Z) - A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules? [27.976789491185354]
We study the question of whether large language models (LLMs) are actually useful to accelerate principled Bayesian optimization in the molecular space.
Our experiments with real-world chemistry problems show that LLMs can be useful for BO over molecules, but only if they have been pretrained or finetuned with domain-specific data.
arXiv Detail & Related papers (2024-02-07T16:32:58Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - Structured Chemistry Reasoning with Large Language Models [70.13959639460015]
Large Language Models (LLMs) excel in diverse areas, yet struggle with complex scientific reasoning, especially in chemistry.
We introduce StructChem, a simple yet effective prompting strategy that offers the desired guidance and substantially boosts the LLMs' chemical reasoning capability.
Tests across four chemistry areas -- quantum chemistry, mechanics, physical chemistry, and kinetics -- StructChem substantially enhances GPT-4's performance, with up to 30% peak improvement.
arXiv Detail & Related papers (2023-11-16T08:20:36Z) - Large Language Models are Zero Shot Hypothesis Proposers [17.612235393984744]
Large Language Models (LLMs) hold a wealth of global and interdisciplinary knowledge that promises to break down information barriers.
We construct a dataset consist of background knowledge and hypothesis pairs from biomedical literature.
We evaluate the hypothesis generation capabilities of various top-tier instructed models in zero-shot, few-shot, and fine-tuning settings.
arXiv Detail & Related papers (2023-11-10T10:03:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.