論文の概要: Evaluating Financial Relational Graphs: Interpretation Before Prediction
- arxiv url: http://arxiv.org/abs/2410.07216v1
- Date: Sat, 28 Sep 2024 22:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 21:37:02.358606
- Title: Evaluating Financial Relational Graphs: Interpretation Before Prediction
- Title(参考訳): 金融関係グラフの評価:予測前の解釈
- Authors: Yingjie Niu, Lanxin Lu, Rian Dolphin, Valerio Poti, Ruihai Dong,
- Abstract要約: 本稿では,S&P500指数に基づくSPNewsデータセットを導入し,動的関係グラフの構築を容易にする。
歴史的金融現象を説明するために関係グラフを用いて,グラフニューラルネットワークを構築する前にその妥当性を評価する。
評価手法は, 様々な財務関係グラフを効果的に区別し, より解釈可能な結果が得られる。
- 参考スコア(独自算出の注目度): 4.421486904657393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and robust stock trend forecasting has been a crucial and challenging task, as stock price changes are influenced by multiple factors. Graph neural network-based methods have recently achieved remarkable success in this domain by constructing stock relationship graphs that reflect internal factors and relationships between stocks. However, most of these methods rely on predefined factors to construct static stock relationship graphs due to the lack of suitable datasets, failing to capture the dynamic changes in stock relationships. Moreover, the evaluation of relationship graphs in these methods is often tied to the performance of neural network models on downstream tasks, leading to confusion and imprecision. To address these issues, we introduce the SPNews dataset, collected based on S\&P 500 Index stocks, to facilitate the construction of dynamic relationship graphs. Furthermore, we propose a novel set of financial relationship graph evaluation methods that are independent of downstream tasks. By using the relationship graph to explain historical financial phenomena, we assess its validity before constructing a graph neural network, ensuring the graph's effectiveness in capturing relevant financial relationships. Experimental results demonstrate that our evaluation methods can effectively differentiate between various financial relationship graphs, yielding more interpretable results compared to traditional approaches. We make our source code publicly available on GitHub to promote reproducibility and further research in this area.
- Abstract(参考訳): 株価変動は複数の要因の影響を受けており、正確で堅牢な株価トレンド予測は重要かつ困難な課題となっている。
グラフニューラルネットワークに基づく手法は、最近、内部要因とストック間の関係を反映したストック関係グラフを構築することで、この領域で顕著な成功を収めた。
しかし、これらの手法の多くは、適切なデータセットがないため、静的なストック関係グラフを構築するための事前定義された要素に依存しており、ストック関係の動的変化を捉えていない。
さらに、これらの手法における関係グラフの評価は、下流タスクにおけるニューラルネットワークモデルの性能と結びついており、混乱と不正確性をもたらす。
これらの問題に対処するため,S\&P 500 Indexの在庫に基づいて収集されたSPNewsデータセットを導入し,動的関係グラフの構築を容易にする。
さらに,下流タスクに依存しない新たな金融関係グラフ評価手法を提案する。
歴史的金融現象を説明するために関係グラフを用いて、グラフニューラルネットワークを構築する前にその妥当性を評価し、関連する金融関係を捉える上でのグラフの有効性を確実にする。
実験結果から,評価手法は様々な財務関係グラフを効果的に区別することができ,従来の手法と比較して解釈可能な結果が得られることが示された。
この領域の再現性とさらなる研究を促進するため、ソースコードをGitHubで公開しています。
関連論文リスト
- DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
本稿では,これらの問題に対処するための知識のない新しいグラフ学習手法を提案する。
まず,信号処理の観点から,エントロピー駆動エッジ生成による動的ストックグラフの自動構築を行う。
最後に, 特徴的階層内特徴を捉えるために, 分離表現学習方式を採用する。
論文 参考訳(メタデータ) (2024-01-03T17:36:27Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
我々は、グラフ領域で以前に検討されていない視点から帰属法を評価する:再学習。
中心となる考え方は、属性によって識別される重要な(あるいは重要でない)関係でネットワークを再訓練することである。
我々は4つの最先端GNN属性法と5つの合成および実世界のグラフ分類データセットについて分析を行った。
論文 参考訳(メタデータ) (2024-01-01T02:03:35Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
グラフは、現実世界の無数に存在する相互接続構造を表す。
グラフ学習方法のような効果的なグラフ分析により、ユーザはグラフデータから深い洞察を得ることができる。
しかし、これらの手法はデータ不均衡に悩まされることが多く、グラフデータでは、あるセグメントが豊富なデータを持っているのに、他のセグメントが不足しているのが一般的な問題である。
これは、より正確で代表的な学習結果のために、これらのデータ分散スキューを補正することを目的として、グラフ上の不均衡学習の出現する分野を必要とする。
論文 参考訳(メタデータ) (2023-08-26T09:11:44Z) - Temporal and Heterogeneous Graph Neural Network for Financial Time
Series Prediction [14.056579711850578]
金融時系列における価格変動の動的関係を学習するための時間的・不均一なグラフニューラルネットワーク(THGNN)アプローチを提案する。
われわれは米国と中国における株式市場に関する広範な実験を行っている。
論文 参考訳(メタデータ) (2023-05-09T11:17:46Z) - Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
本研究では,グラフニューラルネットワークに基づく連続学習因子予測器を提案することにより,高周波取引(HFT)における先物価格予測の課題を解決することを目的とする。
このモデルは、マルチ価格理論とリアルタイム市場ダイナミクスを統合し、既存の手法の制限を効果的に回避する。
中国の先物市場における49の商品先物に関する実証実験は、提案されたモデルが予測精度で他の最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-03-29T08:39:36Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Sparse Graph Learning from Spatiotemporal Time Series [16.427698929775023]
本稿では,グラフ上の分布として関係依存を学習するグラフ学習フレームワークを提案する。
提案手法は,エンドツーエンドの予測アーキテクチャのグラフ学習コンポーネントと同様に,スタンドアローンのグラフ識別手法として利用できることを示す。
論文 参考訳(メタデータ) (2022-05-26T17:02:43Z) - Algorithms for Learning Graphs in Financial Markets [5.735035463793008]
ラプラシアン構造制約下での無向グラフィカルモデル学習の基本問題について検討する。
我々は,ラプラシアン行列を金融資産の精密行列のモデルとして用いるための実証的証拠によって裏付けられた自然な正当化を提案する。
我々は,非方向重み付きグラフを学習するための乗算器の交互方向法に基づく数値アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-12-31T02:48:35Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。