論文の概要: Learning Latent Graph Structures and their Uncertainty
- arxiv url: http://arxiv.org/abs/2405.19933v2
- Date: Wed, 28 May 2025 07:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:49.982861
- Title: Learning Latent Graph Structures and their Uncertainty
- Title(参考訳): 潜在グラフ構造と不確かさの学習
- Authors: Alessandro Manenti, Daniele Zambon, Cesare Alippi,
- Abstract要約: 点予測損失の最小化は、潜時関係情報の適切な学習を保証するものではないことを示す。
本稿では,この共同学習課題を解決するサンプリングベース手法を提案する。
- 参考スコア(独自算出の注目度): 63.95971478893842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks use relational information as an inductive bias to enhance prediction performance. Not rarely, task-relevant relations are unknown and graph structure learning approaches have been proposed to learn them from data. Given their latent nature, no graph observations are available to provide a direct training signal to the learnable relations. Therefore, graph topologies are typically learned on the prediction task alongside the other graph neural network parameters. In this paper, we demonstrate that minimizing point-prediction losses does not guarantee proper learning of the latent relational information and its associated uncertainty. Conversely, we prove that suitable loss functions on the stochastic model outputs simultaneously grant solving two tasks: (i) learning the unknown distribution of the latent graph and (ii) achieving optimal predictions of the target variable. Finally, we propose a sampling-based method that solves this joint learning task. Empirical results validate our theoretical claims and demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): グラフニューラルネットワークは、予測性能を高めるために、帰納バイアスとしてリレーショナル情報を使用する。
当然のことながら、タスク関連関係は未知であり、データからそれらを学ぶためのグラフ構造学習アプローチが提案されている。
その潜在性を考えると、学習可能な関係に直接的な訓練信号を与えるグラフ観察は不可能である。
したがって、グラフトポロジは一般的に、他のグラフニューラルネットワークパラメータと共に予測タスクで学習される。
本稿では,点予測損失の最小化が,潜伏関係情報とその関連不確かさの適切な学習を保証するものではないことを実証する。
逆に、確率モデルにおける適切な損失関数が同時に2つのタスクを解くことを証明している。
(i)潜伏グラフの未知分布を学習し、
2目的変数の最適予測を達成すること。
最後に,この共同学習課題を解決するサンプリングベース手法を提案する。
実証実験により,提案手法の有効性を検証し,提案手法の有効性を実証した。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
本研究では,(マルチモーダル)自己教師型表現学習のデータ予測タスクにおいて,連続領域における識別確率モデルについて検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
MISが要求する条件付き確率密度の和を近似する新しい非パラメトリック手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
不確実性サンプリングは、機械学習モデルのデータ効率を改善することを目的とした、アクティブな学習戦略である。
予測の不確実性を超えた不確実性サンプリングをベンチマークし、他のアクティブラーニング戦略に対する大きなパフォーマンスギャップを強調します。
提案手法は,データ生成プロセスの観点から基幹的ベイズ不確実性推定法を開発し,不確実性サンプリングを最適クエリへ導く上での有効性を実証する。
論文 参考訳(メタデータ) (2024-05-02T16:50:47Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
情報理論AEPに基づく信頼性学習の理論的保証を提供する。
次に、高効率なリカレントニューラルネット(RNN)フレームワークに焦点を当て、少数ショット学習のための縮小エントロピーアルゴリズムを提案する。
実験結果から,学習モデルのサンプル効率,一般化,時間的複雑さを向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-09-28T17:33:11Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Sparse Graph Learning from Spatiotemporal Time Series [16.427698929775023]
本稿では,グラフ上の分布として関係依存を学習するグラフ学習フレームワークを提案する。
提案手法は,エンドツーエンドの予測アーキテクチャのグラフ学習コンポーネントと同様に,スタンドアローンのグラフ識別手法として利用できることを示す。
論文 参考訳(メタデータ) (2022-05-26T17:02:43Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。