論文の概要: Distilling Analysis from Generative Models for Investment Decisions
- arxiv url: http://arxiv.org/abs/2410.07225v1
- Date: Wed, 2 Oct 2024 01:39:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 21:26:45.716072
- Title: Distilling Analysis from Generative Models for Investment Decisions
- Title(参考訳): 投資決定のための生成モデルからの蒸留分析
- Authors: Chung-Chi Chen, Hiroya Takamura, Ichiro Kobayashi, Yusuke Miyao,
- Abstract要約: 専門家の意思決定過程をシミュレートする新しいデータセットA3を導入する。
現在のモデルでは,プロフェッショナルの行動を予測する上での課題が指摘されているが,提案したChain-of-Decisionアプローチは,有望な改善を示すものだ。
意見生成システムを統合し,各ニュース項目に基づいて主観的分析を行い,提案課題の性能をさらに向上させる。
- 参考スコア(独自算出の注目度): 21.079716095758158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Professionals' decisions are the focus of every field. For example, politicians' decisions will influence the future of the country, and stock analysts' decisions will impact the market. Recognizing the influential role of professionals' perspectives, inclinations, and actions in shaping decision-making processes and future trends across multiple fields, we propose three tasks for modeling these decisions in the financial market. To facilitate this, we introduce a novel dataset, A3, designed to simulate professionals' decision-making processes. While we find current models present challenges in forecasting professionals' behaviors, particularly in making trading decisions, the proposed Chain-of-Decision approach demonstrates promising improvements. It integrates an opinion-generator-in-the-loop to provide subjective analysis based on each news item, further enhancing the proposed tasks' performance.
- Abstract(参考訳): 専門職の決定はあらゆる分野の焦点である。
例えば、政治家の判断は国の将来に影響を及ぼし、株価アナリストの判断は市場に影響を与える。
複数の分野にわたる意思決定プロセスの形成における専門家の視点、傾向、行動の影響力を認識し、金融市場でこれらの決定をモデル化するための3つの課題を提案する。
これを容易にするために,専門家の意思決定プロセスをシミュレートする新しいデータセットA3を導入する。
現在のモデルでは、特に取引決定を行う際に、プロフェッショナルの行動を予測するための課題が提示されているが、提案されたChain-of-Decisionアプローチは、有望な改善を示している。
意見生成システムを統合し,各ニュース項目に基づいて主観的分析を行い,提案課題の性能をさらに向上させる。
関連論文リスト
- Decision-Focused Forecasting: Decision Losses for Multistage Optimisation [0.0]
本稿では,予測の時間的時間的決定効果を考慮した多層モデルである決定中心予測を提案する。
本モデルでは,予測による状態パスを考慮した調整を行った。
エネルギー貯蔵調停タスクへのモデルの適用を実証し,本モデルが既存手法より優れていることを報告する。
論文 参考訳(メタデータ) (2024-05-23T15:48:46Z) - Bridging the gap: Towards an Expanded Toolkit for AI-driven Decision-Making in the Public Sector [6.693502127460251]
AIによる意思決定システムは、刑事司法、社会福祉、金融詐欺検出、公衆衛生などの分野に適用される。
これらのシステムは、機械学習(ML)モデルと公共セクターの意思決定の複雑な現実を整合させるという課題に直面している。
本稿では,データ側における分散シフトやラベルバイアス,過去の意思決定の影響,モデル出力側における競合する目標や人道支援など,不一致が発生する可能性のある5つの重要な課題について検討する。
論文 参考訳(メタデータ) (2023-10-29T17:44:48Z) - Rational Decision-Making Agent with Internalized Utility Judgment [91.80700126895927]
大規模言語モデル(LLM)は目覚ましい進歩を示し、従来のNLPアプリケーションを超えて複雑な多段階決定タスクを実行できるエージェントにLLMを開発するための重要な努力を惹きつけている。
本稿では,RadAgentを提案する。このRadAgentは,経験探索とユーティリティ学習を含む反復的なフレームワークを通じて,合理性の発展を促進する。
ToolBenchデータセットの実験結果は、RadAgentがベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-08-24T03:11:45Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Morshed: Guiding Behavioral Decision-Makers towards Better Security
Investment in Interdependent Systems [10.960507931439317]
我々は、相互依存システムの確保において、人間の意思決定の行動バイアスをモデル化する。
このような行動決定が資源配分の最適パターンに繋がることを示す。
複数ラウンド構成における意思決定向上のための3つの学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-12T18:23:55Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
我々は,内因性,文脈依存型時間圧下でのエビデンスに基づく意思決定の一般的な設定のための枠組みを開発する。
意思決定戦略において、サプライズ、サスペンス、最適性の直感的な概念をモデル化する方法を実証する。
論文 参考訳(メタデータ) (2020-06-25T02:30:45Z) - Causal Strategic Linear Regression [5.672132510411465]
信用スコアや学術試験のような多くの予測的な意思決定シナリオでは、意思決定者は、決定ルールを「ゲーム」するためにエージェントの正当性を説明するモデルを構築しなければならない。
私たちは、変更可能な属性の関数として、モデリングエージェントの結果の同時処理に参加します。
3つの異なる意思決定目標を最適化する意思決定ルールを学習するための効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-02-24T03:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。