Benchmarking Data Heterogeneity Evaluation Approaches for Personalized Federated Learning
- URL: http://arxiv.org/abs/2410.07286v2
- Date: Mon, 28 Oct 2024 05:00:37 GMT
- Title: Benchmarking Data Heterogeneity Evaluation Approaches for Personalized Federated Learning
- Authors: Zhilong Li, Xiaohu Wu, Xiaoli Tang, Tiantian He, Yew-Soon Ong, Mengmeng Chen, Qiqi Liu, Qicheng Lao, Han Yu,
- Abstract summary: The proposed benchmarking framework includes six representative approaches.
It is beneficial for keeping related research activities on the right track in terms of: (1) designing PFL schemes, (2) selecting appropriate data heterogeneity evaluation approaches for specific FL application scenarios, and (3) addressing fairness issues in collaborative model training.
- Score: 31.52293772126033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is growing research interest in measuring the statistical heterogeneity of clients' local datasets. Such measurements are used to estimate the suitability for collaborative training of personalized federated learning (PFL) models. Currently, these research endeavors are taking place in silos and there is a lack of a unified benchmark to provide a fair and convenient comparison among various approaches in common settings. We aim to bridge this important gap in this paper. The proposed benchmarking framework currently includes six representative approaches. Extensive experiments have been conducted to compare these approaches under five standard non-IID FL settings, providing much needed insights into which approaches are advantageous under which settings. The proposed framework offers useful guidance on the suitability of various data divergence measures in FL systems. It is beneficial for keeping related research activities on the right track in terms of: (1) designing PFL schemes, (2) selecting appropriate data heterogeneity evaluation approaches for specific FL application scenarios, and (3) addressing fairness issues in collaborative model training. The code is available at https://github.com/Xiaoni-61/DH-Benchmark.
Related papers
- Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
This paper proposes a novel measure named Top-K Pairwise Ranking (TKPR)
A series of analyses show that TKPR is compatible with existing ranking-based measures.
On the other hand, we establish a sharp generalization bound for the proposed framework based on a novel technique named data-dependent contraction.
arXiv Detail & Related papers (2024-07-09T09:36:37Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Data Valuation and Detections in Federated Learning [4.899818550820576]
Federated Learning (FL) enables collaborative model training while preserving the privacy of raw data.
A challenge in this framework is the fair and efficient valuation of data, which is crucial for incentivizing clients to contribute high-quality data in the FL task.
This paper introduces a novel privacy-preserving method for evaluating client contributions and selecting relevant datasets without a pre-specified training algorithm in an FL task.
arXiv Detail & Related papers (2023-11-09T12:01:32Z) - Federated Learning for Clinical Structured Data: A Benchmark Comparison
of Engineering and Statistical Approaches [37.192249479129444]
Federated learning (FL) has shown promising potential in safeguarding data privacy in healthcare collaborations.
While the term "FL" was originally coined by the engineering community, the statistical field has also explored similar privacy-preserving algorithms.
We present the first comprehensive comparison of FL frameworks from both engineering and statistical domains.
arXiv Detail & Related papers (2023-11-06T10:11:59Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - UniFed: All-In-One Federated Learning Platform to Unify Open-Source
Frameworks [53.20176108643942]
We present UniFed, the first unified platform for standardizing open-source Federated Learning (FL) frameworks.
UniFed streamlines the end-to-end workflow for distributed experimentation and deployment, encompassing 11 popular open-source FL frameworks.
We evaluate and compare 11 popular FL frameworks from the perspectives of functionality, privacy protection, and performance.
arXiv Detail & Related papers (2022-07-21T05:03:04Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - FedSemi: An Adaptive Federated Semi-Supervised Learning Framework [23.90642104477983]
Federated learning (FL) has emerged as an effective technique to co-training machine learning models without actually sharing data and leaking privacy.
Most existing FL methods focus on the supervised setting and ignore the utilization of unlabeled data.
We propose FedSemi, a novel, adaptive, and general framework, which firstly introduces the consistency regularization into FL using a teacher-student model.
arXiv Detail & Related papers (2020-12-06T15:46:04Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.