Learning to learn ecosystems from limited data -- a meta-learning approach
- URL: http://arxiv.org/abs/2410.07368v1
- Date: Wed, 2 Oct 2024 16:23:34 GMT
- Title: Learning to learn ecosystems from limited data -- a meta-learning approach
- Authors: Zheng-Meng Zhai, Bryan Glaz, Mulugeta Haile, Ying-Cheng Lai,
- Abstract summary: We develop a meta-learning framework with time-delayed feedforward neural networks to predict the long-term behaviors of ecological systems.
We show that the framework is capable of accurately reconstructing the dynamical climate'' of the ecological system with limited data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A fundamental challenge in developing data-driven approaches to ecological systems for tasks such as state estimation and prediction is the paucity of the observational or measurement data. For example, modern machine-learning techniques such as deep learning or reservoir computing typically require a large quantity of data. Leveraging synthetic data from paradigmatic nonlinear but non-ecological dynamical systems, we develop a meta-learning framework with time-delayed feedforward neural networks to predict the long-term behaviors of ecological systems as characterized by their attractors. We show that the framework is capable of accurately reconstructing the ``dynamical climate'' of the ecological system with limited data. Three benchmark population models in ecology, namely the Hastings-Powell model, a three-species food chain, and the Lotka-Volterra system, are used to demonstrate the performance of the meta-learning based prediction framework. In all cases, enhanced accuracy and robustness are achieved using five to seven times less training data as compared with the corresponding machine-learning method trained solely from the ecosystem data. A number of issues affecting the prediction performance are addressed.
Related papers
- Scientific machine learning in ecological systems: A study on the predator-prey dynamics [1.4633779950109127]
We aim to uncover the underlying differential equations without prior knowledge of the system, relying solely on training data and neural networks.
We demonstrate that both Neural ODEs and UDEs can be effectively utilized for prediction and forecasting the LotkaVolterra system.
We observe how UDEs outperform Neural ODEs by effectively recovering the underlying dynamics and achieving accurate forecasting with significantly less training data.
arXiv Detail & Related papers (2024-11-11T10:40:45Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
We present a universal learning framework for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems.
arXiv Detail & Related papers (2020-10-07T13:50:13Z) - Machine Learning for Robust Identification of Complex Nonlinear
Dynamical Systems: Applications to Earth Systems Modeling [8.896888286819635]
Systems exhibiting chaos are ubiquitous across Earth Sciences.
System Identification remains a challenge in climate science.
We consider a chaotic system - two-level Lorenz-96 - used as a benchmark model in the climate science literature.
arXiv Detail & Related papers (2020-08-12T22:37:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.