OV-NeRF: Open-vocabulary Neural Radiance Fields with Vision and Language Foundation Models for 3D Semantic Understanding
- URL: http://arxiv.org/abs/2402.04648v2
- Date: Sat, 21 Sep 2024 15:06:21 GMT
- Title: OV-NeRF: Open-vocabulary Neural Radiance Fields with Vision and Language Foundation Models for 3D Semantic Understanding
- Authors: Guibiao Liao, Kaichen Zhou, Zhenyu Bao, Kanglin Liu, Qing Li,
- Abstract summary: OV-NeRF exploits potential of pre-trained vision and language foundation models to enhance semantic field learning.
Our approach achieves a significant improvement of 20.31% and 18.42% in mIoU metric on Replica and ScanNet, respectively.
- Score: 9.25233177676278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of Neural Radiance Fields (NeRFs) has provided a potent representation for encapsulating the geometric and appearance characteristics of 3D scenes. Enhancing the capabilities of NeRFs in open-vocabulary 3D semantic perception tasks has been a recent focus. However, current methods that extract semantics directly from Contrastive Language-Image Pretraining (CLIP) for semantic field learning encounter difficulties due to noisy and view-inconsistent semantics provided by CLIP. To tackle these limitations, we propose OV-NeRF, which exploits the potential of pre-trained vision and language foundation models to enhance semantic field learning through proposed single-view and cross-view strategies. First, from the single-view perspective, we introduce Region Semantic Ranking (RSR) regularization by leveraging 2D mask proposals derived from Segment Anything (SAM) to rectify the noisy semantics of each training view, facilitating accurate semantic field learning. Second, from the cross-view perspective, we propose a Cross-view Self-enhancement (CSE) strategy to address the challenge raised by view-inconsistent semantics. Rather than invariably utilizing the 2D inconsistent semantics from CLIP, CSE leverages the 3D consistent semantics generated from the well-trained semantic field itself for semantic field training, aiming to reduce ambiguity and enhance overall semantic consistency across different views. Extensive experiments validate our OV-NeRF outperforms current state-of-the-art methods, achieving a significant improvement of 20.31% and 18.42% in mIoU metric on Replica and ScanNet, respectively. Furthermore, our approach exhibits consistent superior results across various CLIP configurations, further verifying its robustness. Project page: https://github.com/pcl3dv/OV-NeRF.
Related papers
- 3D Vision-Language Gaussian Splatting [29.047044145499036]
Multi-modal 3D scene understanding has vital applications in robotics, autonomous driving, and virtual/augmented reality.
We propose a solution that achieves adequately handles the distinct visual and semantic modalities.
We also employ a camera-view blending technique to improve semantic consistency between existing views.
arXiv Detail & Related papers (2024-10-10T03:28:29Z) - Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining [41.145598142457686]
LiDAR-camera 3D representation pretraining has shown significant promise for 3D perception tasks and related applications.
We propose a novel Vision-Foundation-Model-driven sample exploring module to meticulously select LiDAR-Image pairs from unexplored frames.
Our method consistently outperforms existing state-of-the-art pretraining frameworks across three major public autonomous driving datasets.
arXiv Detail & Related papers (2024-07-10T08:46:29Z) - GOV-NeSF: Generalizable Open-Vocabulary Neural Semantic Fields [50.68719394443926]
Generalizable Open-Vocabulary Neural Semantic Fields (GOV-NeSF) is a novel approach offering a generalizable implicit representation of 3D scenes with open-vocabulary semantics.
GOV-NeSF exhibits state-of-the-art performance in both 2D and 3D open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-04-01T05:19:50Z) - Language-Driven Visual Consensus for Zero-Shot Semantic Segmentation [114.72734384299476]
We propose a Language-Driven Visual Consensus (LDVC) approach, fostering improved alignment of semantic and visual information.
We leverage class embeddings as anchors due to their discrete and abstract nature, steering vision features toward class embeddings.
Our approach significantly boosts the capacity of segmentation models for unseen classes.
arXiv Detail & Related papers (2024-03-13T11:23:55Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
We propose an image-guidance network (IGNet) which builds upon the idea of distilling high level feature information from a domain adapted synthetically trained 2D semantic segmentation network.
IGNet achieves state-of-the-art results for weakly-supervised LiDAR semantic segmentation on ScribbleKITTI, boasting up to 98% relative performance to fully supervised training with only 8% labeled points.
arXiv Detail & Related papers (2023-11-27T07:57:29Z) - GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding [101.32590239809113]
Generalized Perception NeRF (GP-NeRF) is a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework.
We propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field.
arXiv Detail & Related papers (2023-11-20T15:59:41Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
We present a transformer-based end-to-end ZSL method named DUET.
We develop a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images.
We find that DUET can often achieve state-of-the-art performance, its components are effective and its predictions are interpretable.
arXiv Detail & Related papers (2022-07-04T11:12:12Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and
Intra-modal Knowledge Integration [48.01536973731182]
We introduce a new vision-and-language pretraining method called ROSITA.
It integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments.
ROSITA significantly outperforms existing state-of-the-art methods on three typical vision-and-language tasks over six benchmark datasets.
arXiv Detail & Related papers (2021-08-16T13:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.