Fine-detailed Neural Indoor Scene Reconstruction using multi-level importance sampling and multi-view consistency
- URL: http://arxiv.org/abs/2410.07597v1
- Date: Thu, 10 Oct 2024 04:08:06 GMT
- Title: Fine-detailed Neural Indoor Scene Reconstruction using multi-level importance sampling and multi-view consistency
- Authors: Xinghui Li, Yuchen Ji, Xiansong Lai, Wanting Zhang,
- Abstract summary: We propose a novel neural implicit surface reconstruction method, named FD-NeuS, to learn fine-detailed 3D models.
Specifically, we leverage segmentation priors to guide region-based ray sampling, and use piecewise exponential functions as weights to pilot 3D points sampling.
In addition, we introduce multi-view feature consistency and multi-view normal consistency as supervision and uncertainty respectively, which further improve the reconstruction of details.
- Score: 1.912429179274357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, neural implicit 3D reconstruction in indoor scenarios has become popular due to its simplicity and impressive performance. Previous works could produce complete results leveraging monocular priors of normal or depth. However, they may suffer from over-smoothed reconstructions and long-time optimization due to unbiased sampling and inaccurate monocular priors. In this paper, we propose a novel neural implicit surface reconstruction method, named FD-NeuS, to learn fine-detailed 3D models using multi-level importance sampling strategy and multi-view consistency methodology. Specifically, we leverage segmentation priors to guide region-based ray sampling, and use piecewise exponential functions as weights to pilot 3D points sampling along the rays, ensuring more attention on important regions. In addition, we introduce multi-view feature consistency and multi-view normal consistency as supervision and uncertainty respectively, which further improve the reconstruction of details. Extensive quantitative and qualitative results show that FD-NeuS outperforms existing methods in various scenes.
Related papers
- MVGaussian: High-Fidelity text-to-3D Content Generation with Multi-View Guidance and Surface Densification [13.872254142378772]
This paper introduces a unified framework for text-to-3D content generation.
Our approach utilizes multi-view guidance to iteratively form the structure of the 3D model.
We also introduce a novel densification algorithm that aligns gaussians close to the surface.
arXiv Detail & Related papers (2024-09-10T16:16:34Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
We propose a two-stage training process, decouple view-dependent and view-independent colors, and leverage two novel consistency constraints to enhance detail reconstruction performance without requiring extra priors.
Experiments on synthetic and real-world datasets show the capability of reducing the interference from prior estimation errors.
arXiv Detail & Related papers (2023-09-18T13:05:23Z) - Exploiting Multiple Priors for Neural 3D Indoor Reconstruction [15.282699095607594]
We propose a novel neural implicit modeling method that leverages multiple regularization strategies to achieve better reconstructions of large indoor environments.
Experimental results show that our approach produces state-of-the-art 3D reconstructions in challenging indoor scenarios.
arXiv Detail & Related papers (2023-09-13T15:23:43Z) - DebSDF: Delving into the Details and Bias of Neural Indoor Scene Reconstruction [34.07747722661987]
This paper focuses on the utilization of uncertainty in monocular priors and the bias in SDF-based volume rendering.
We propose an uncertainty modeling technique that associates larger uncertainties with larger errors in the monocular priors.
High-uncertainty priors are then excluded from optimization to prevent bias.
arXiv Detail & Related papers (2023-08-29T18:00:22Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion [85.24673400250671]
We present Bi-level Neural Volume Fusion (BNV-Fusion), which leverages recent advances in neural implicit representations and neural rendering for dense 3D reconstruction.
In order to incrementally integrate new depth maps into a global neural implicit representation, we propose a novel bi-level fusion strategy.
We evaluate the proposed method on multiple datasets quantitatively and qualitatively, demonstrating a significant improvement over existing methods.
arXiv Detail & Related papers (2022-04-03T19:33:09Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.