論文の概要: Parallel Digital Twin-driven Deep Reinforcement Learning for User Association and Load Balancing in Dynamic Wireless Networks
- arxiv url: http://arxiv.org/abs/2410.07611v1
- Date: Thu, 10 Oct 2024 04:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:56:40.659163
- Title: Parallel Digital Twin-driven Deep Reinforcement Learning for User Association and Load Balancing in Dynamic Wireless Networks
- Title(参考訳): 動的無線ネットワークにおけるユーザアソシエーションとロードバランシングのための並列ディジタルツイン駆動型深層強化学習
- Authors: Zhenyu Tao, Wei Xu, Xiaohu You,
- Abstract要約: ネットワークにおけるユーザアソシエーションとロードバランシングのための並列ディジタルツイン(DT)駆動DRL法を提案する。
提案手法では,分散DRL戦略を用いて様々なユーザ数を処理するとともに,より高速な収束を実現するために改良されたニューラルネットワーク構造を利用する。
並列DT駆動DRL法は実環境訓練と同等の性能を示す。
- 参考スコア(独自算出の注目度): 17.041443813376546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization of user association in a densely deployed heterogeneous cellular network is usually challenging and even more complicated due to the dynamic nature of user mobility and fluctuation in user counts. While deep reinforcement learning (DRL) emerges as a promising solution, its application in practice is hindered by high trial-and-error costs in real world and unsatisfactory physical network performance during training. In addition, existing DRL-based user association methods are usually only applicable to scenarios with a fixed number of users due to convergence and compatibility challenges. In this paper, we propose a parallel digital twin (DT)-driven DRL method for user association and load balancing in networks with both dynamic user counts, distribution, and mobility patterns. Our method employs a distributed DRL strategy to handle varying user numbers and exploits a refined neural network structure for faster convergence. To address these DRL training-related challenges, we devise a high-fidelity DT construction technique, featuring a zero-shot generative user mobility model, named Map2Traj, based on a diffusion model. Map2Traj estimates user trajectory patterns and spatial distributions solely from street maps. Armed with this DT environment, DRL agents are enabled to be trained without the need for interactions with the physical network. To enhance the generalization ability of DRL models for dynamic scenarios, a parallel DT framework is further established to alleviate strong correlation and non-stationarity in single-environment training and improve the training efficiency. Numerical results show that the proposed parallel DT-driven DRL method achieves closely comparable performance to real environment training, and even outperforms those trained in a single real-world environment with nearly 20% gain in terms of cell-edge user performance.
- Abstract(参考訳): 密にデプロイされたヘテロジニアスセルネットワークにおけるユーザアソシエーションの最適化は、ユーザモビリティの動的な性質とユーザ数の変動のため、通常困難であり、さらに複雑である。
深層強化学習(DRL)は有望なソリューションとして現れるが、実際の応用は実世界での試行錯誤のコストが高く、トレーニング中に不満足な物理ネットワーク性能によって妨げられる。
さらに,既存のDRLベースのユーザアソシエーション手法は,コンバージェンスや互換性の問題から,一定数のユーザを持つシナリオにのみ適用可能である。
本稿では,動的ユーザ数,分散,モビリティの両パターンを持つネットワークにおいて,ユーザアソシエーションとロードバランシングのための並列ディジタルツイン(DT)駆動DRL法を提案する。
提案手法では,分散DRL戦略を用いて様々なユーザ数を処理するとともに,より高速な収束を実現するために改良されたニューラルネットワーク構造を利用する。
これらのDRLトレーニングに関わる課題に対処するため,拡散モデルに基づくゼロショット生成ユーザモビリティモデルであるMap2Trajを特徴とする高忠実DT構築手法を考案した。
Map2Trajは、ストリートマップのみから、ユーザの軌道パターンと空間分布を推定する。
このDT環境では、DRLエージェントは物理ネットワークとのインタラクションを必要とせずにトレーニングすることができる。
動的シナリオに対するDRLモデルの一般化能力を高めるため、単一環境トレーニングにおける強い相関と非定常性を緩和し、トレーニング効率を向上させるために並列DTフレームワークが確立された。
並列DT駆動DRL法は実環境訓練と同等の性能を示し, セルエッジユーザ性能の20%近く向上した実環境環境において, 訓練結果よりも優れていた。
関連論文リスト
- DistRL: An Asynchronous Distributed Reinforcement Learning Framework for On-Device Control Agents [38.0441002097771]
DistRLは、モバイルデバイス制御エージェントのオンラインRLファインチューニングの効率を高めるために設計された、新しいフレームワークである。
平均して、DistRLはトレーニング効率を3倍改善し、主要な同期マルチマシンメソッドよりも2.4倍高速なトレーニングデータ収集を可能にする。
論文 参考訳(メタデータ) (2024-10-18T18:19:56Z) - Compressing Deep Reinforcement Learning Networks with a Dynamic
Structured Pruning Method for Autonomous Driving [63.155562267383864]
深部強化学習(DRL)は複雑な自律運転シナリオにおいて顕著な成功を収めている。
DRLモデルは、必然的に高いメモリ消費と計算をもたらし、リソース限定の自動運転デバイスへの広範な展開を妨げる。
そこで本研究では,DRLモデルの非重要なニューロンを段階的に除去する,新しい動的構造化プルーニング手法を提案する。
論文 参考訳(メタデータ) (2024-02-07T09:00:30Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Digital Twin Assisted Deep Reinforcement Learning for Online Admission
Control in Sliced Network [19.152875040151976]
この問題に対処するために、ディジタルツイン(DT)高速化DRLソリューションを提案する。
ニューラルネットワークベースのDTは、システムをキューイングするためのカスタマイズされた出力層を備え、教師付き学習を通じてトレーニングされ、DRLモデルのトレーニングフェーズを支援するために使用される。
DT加速DRLは、直接訓練された最先端Q-ラーニングモデルと比較して、リソース利用率を40%以上向上させる。
論文 参考訳(メタデータ) (2023-10-07T09:09:19Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion
Detection [2.7122540465034106]
侵入検知システム(IDS)は、これらの攻撃を検出するための重要なセキュリティ技術である。
本稿では,GAN(Generative Adversarial Network)が生成した合成データを用いて,深層強化学習(DRL)モデルの入力として用いる新しいハイブリッド手法を提案する。
その結果,DRLを特定の合成データセット上でトレーニングすると,真の不均衡データセット上でのトレーニングよりも,マイノリティクラスを正しく分類する方が優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-05T19:51:24Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
我々は、オンザフライで調整可能な判別器は、そのような時間変化に適応できると論じる。
総合的な実証研究により、提案したトレーニング戦略がDynamicDと呼ばれ、追加のコストやトレーニング目標を発生させることなく、合成性能を向上させることが確認された。
論文 参考訳(メタデータ) (2022-09-20T17:57:33Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - Pareto Deterministic Policy Gradients and Its Application in 5G Massive
MIMO Networks [32.099949375036495]
我々は,強化学習(RL)アプローチを用いて,セルロードバランスとネットワークスループットを協調的に最適化することを検討する。
RLの背景にある理論的根拠は、ユーザモビリティとネットワークのダイナミクスを解析的にモデル化することの難しさを回避することである。
この共同最適化を実現するために、ベクトル報酬をRL値ネットワークに統合し、別々のポリシーネットワークを介してRLアクションを実行する。
論文 参考訳(メタデータ) (2020-12-02T15:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。