Explainability of Deep Neural Networks for Brain Tumor Detection
- URL: http://arxiv.org/abs/2410.07613v1
- Date: Thu, 10 Oct 2024 05:01:21 GMT
- Title: Explainability of Deep Neural Networks for Brain Tumor Detection
- Authors: S. Park, J. Kim,
- Abstract summary: We apply explainable AI (XAI) techniques to assess the performance of various models on real-world medical data.
CNNs with shallower architectures are more effective for small datasets and can support medical decision-making.
- Score: 0.0828720658988688
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Medical image classification is crucial for supporting healthcare professionals in decision-making and training. While Convolutional Neural Networks (CNNs) have traditionally dominated this field, Transformer-based models are gaining attention. In this study, we apply explainable AI (XAI) techniques to assess the performance of various models on real-world medical data and identify areas for improvement. We compare CNN models such as VGG-16, ResNet-50, and EfficientNetV2L with a Transformer model: ViT-Base-16. Our results show that data augmentation has little impact, but hyperparameter tuning and advanced modeling improve performance. CNNs, particularly VGG-16 and ResNet-50, outperform ViT-Base-16 and EfficientNetV2L, likely due to underfitting from limited data. XAI methods like LIME and SHAP further reveal that better-performing models visualize tumors more effectively. These findings suggest that CNNs with shallower architectures are more effective for small datasets and can support medical decision-making.
Related papers
- Classification of Brain Tumors using Hybrid Deep Learning Models [0.0]
This study applied transfer learning to achieve strong classification performance using fewer training samples.<n>Results showed that EfficientNetV2 delivered superior performance compared to the other models.
arXiv Detail & Related papers (2025-08-02T12:56:18Z) - Comparative Analysis of Deep Learning Strategies for Hypertensive Retinopathy Detection from Fundus Images: From Scratch and Pre-trained Models [5.860609259063137]
This paper presents a comparative analysis of deep learning strategies for detecting hypertensive retinopathy from fundus images.<n>We investigate three distinct approaches: a custom CNN, a suite of pre-trained transformer-based models, and an AutoML solution.
arXiv Detail & Related papers (2025-06-14T13:11:33Z) - Residual Vision Transformer (ResViT) Based Self-Supervised Learning Model for Brain Tumor Classification [0.08192907805418585]
Self-supervised learning models provide data-efficient and remarkable solutions to limited dataset problems.
This paper introduces a generative SSL model for brain tumor classification in two stages.
The proposed model attains the highest accuracy, achieving 90.56% on the BraTs dataset with T1 sequence, 98.53% on the Figshare, and 98.47% on the Kaggle brain tumor datasets.
arXiv Detail & Related papers (2024-11-19T21:42:57Z) - MIC: Medical Image Classification Using Chest X-ray (COVID-19 and Pneumonia) Dataset with the Help of CNN and Customized CNN [0.0]
This study introduces a customized convolutional neural network (CCNN) for medical image classification.
The proposed CCNN was compared with a convolutional neural network (CNN) and other models that used the same dataset.
This research found that the Convolutional Neural Network (CCNN) achieved 95.62% validation accuracy and 0.1270 validation loss.
arXiv Detail & Related papers (2024-11-02T07:18:53Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - A Comparative Study of CNN, ResNet, and Vision Transformers for Multi-Classification of Chest Diseases [0.0]
Vision Transformers (ViT) are powerful tools due to their scalability and ability to process large amounts of data.
We fine-tuned two variants of ViT models, one pre-trained on ImageNet and another trained from scratch, using the NIH Chest X-ray dataset.
Our study evaluates the performance of these models in the multi-label classification of 14 distinct diseases.
arXiv Detail & Related papers (2024-05-31T23:56:42Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - InternImage: Exploring Large-Scale Vision Foundation Models with
Deformable Convolutions [95.94629864981091]
This work presents a new large-scale CNN-based foundation model, termed InternImage, which can obtain the gain from increasing parameters and training data like ViTs.
The proposed InternImage reduces the strict inductive bias of traditional CNNs and makes it possible to learn stronger and more robust patterns with large-scale parameters from massive data like ViTs.
arXiv Detail & Related papers (2022-11-10T18:59:04Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Improving Vision Transformers by Revisiting High-frequency Components [106.7140968644414]
We show that Vision Transformer (ViT) models are less effective in capturing the high-frequency components of images than CNN models.
To compensate, we propose HAT, which directly augments high-frequency components of images via adversarial training.
We show that HAT can consistently boost the performance of various ViT models.
arXiv Detail & Related papers (2022-04-03T05:16:51Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
arXiv Detail & Related papers (2021-12-15T08:06:45Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - An Interaction-based Convolutional Neural Network (ICNN) Towards Better
Understanding of COVID-19 X-ray Images [0.0]
We propose a novel Interaction-based Convolutional Neural Network (ICNN) that does not make assumptions about the relevance of local information.
We demonstrate that the proposed method produces state-of-the-art prediction performance of 99.8% on a real-world data set classifying COVID-19 Chest X-ray images.
arXiv Detail & Related papers (2021-06-13T04:41:17Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
equivariant neural networks have gained increased interest in the deep learning community.
They have been successfully applied in the medical domain where symmetries in the data can be effectively exploited to build more accurate and robust models.
Mobile, on-device implementations of deep learning solutions have been developed for medical applications.
However, equivariant models are commonly implemented using large and computationally expensive architectures, not suitable to run on mobile devices.
In this work, we design and test an equivariant version of MobileNetV2 and further optimize it with model quantization to enable more efficient inference.
arXiv Detail & Related papers (2020-04-21T00:49:11Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.