MIC: Medical Image Classification Using Chest X-ray (COVID-19 and Pneumonia) Dataset with the Help of CNN and Customized CNN
- URL: http://arxiv.org/abs/2411.01163v1
- Date: Sat, 02 Nov 2024 07:18:53 GMT
- Title: MIC: Medical Image Classification Using Chest X-ray (COVID-19 and Pneumonia) Dataset with the Help of CNN and Customized CNN
- Authors: Nafiz Fahad, Fariha Jahan, Md Kishor Morol, Rasel Ahmed, Md. Abdullah-Al-Jubair,
- Abstract summary: This study introduces a customized convolutional neural network (CCNN) for medical image classification.
The proposed CCNN was compared with a convolutional neural network (CNN) and other models that used the same dataset.
This research found that the Convolutional Neural Network (CCNN) achieved 95.62% validation accuracy and 0.1270 validation loss.
- Score: 0.0
- License:
- Abstract: The COVID19 pandemic has had a detrimental impact on the health and welfare of the worlds population. An important strategy in the fight against COVID19 is the effective screening of infected patients, with one of the primary screening methods involving radiological imaging with the use of chest Xrays. This is why this study introduces a customized convolutional neural network (CCNN) for medical image classification. This study used a dataset of 6432 images named Chest Xray (COVID19 and Pneumonia), and images were preprocessed using techniques, including resizing, normalizing, and augmentation, to improve model training and performance. The proposed CCNN was compared with a convolutional neural network (CNN) and other models that used the same dataset. This research found that the Convolutional Neural Network (CCNN) achieved 95.62% validation accuracy and 0.1270 validation loss. This outperformed earlier models and studies using the same dataset. This result indicates that our models learn effectively from training data and adapt efficiently to new, unseen data. In essence, the current CCNN model achieves better medical image classification performance, which is why this CCNN model efficiently classifies medical images. Future research may extend the models application to other medical imaging datasets and develop realtime offline medical image classification websites or apps.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
coronavirus disease (COVID-19) has been declared a worldwide pandemic.
One potential solution to detect COVID-19 is by analyzing the chest X-ray images using Deep Learning (DL) models.
In this study, we propose a novel randomly CNN architecture for the recognition of COVID-19.
The proposed CNN model yields encouraging results with 94% and 99% of accuracy for COVIDx and enhanced COVID-19 dataset, respectively.
arXiv Detail & Related papers (2021-05-17T23:40:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Fusion of convolution neural network, support vector machine and Sobel
filter for accurate detection of COVID-19 patients using X-ray images [14.311213877254348]
The coronavirus (COVID-19) is currently the most common contagious disease which is prevalent all over the world.
It is essential to use an automatic diagnosis system along with clinical procedures for the rapid diagnosis of COVID-19 to prevent its spread.
In this study, a fusion of convolutional neural network (CNN), support vector machine (SVM), and Sobel filter is proposed to detect COVID-19 using X-ray images.
arXiv Detail & Related papers (2021-02-13T08:08:36Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
Recent research has shown radiography of COVID-19 patient contains salient information about the COVID-19 virus.
Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention.
In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for improved classification of COVID-19 from CXR images.
arXiv Detail & Related papers (2020-11-06T20:26:26Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - A Light CNN for detecting COVID-19 from CT scans of the chest [9.088303226909279]
OVID-19 is a world-wide disease that has been declared as a pandemic by the World Health Organization.
Deep Learning has been extensively used in medical imaging and convolutional neural networks (CNNs) have been also used for classification of CT images.
We propose a light CNN design based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images.
arXiv Detail & Related papers (2020-04-24T07:58:49Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.