COVID-19 Electrocardiograms Classification using CNN Models
- URL: http://arxiv.org/abs/2112.08931v1
- Date: Wed, 15 Dec 2021 08:06:45 GMT
- Title: COVID-19 Electrocardiograms Classification using CNN Models
- Authors: Ismail Shahin, Ali Bou Nassif, Mohamed Bader Alsabek
- Abstract summary: A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
- Score: 1.1172382217477126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the periodic rise and fall of COVID-19 and numerous countries being
affected by its ramifications, there has been a tremendous amount of work that
has been done by scientists, researchers, and doctors all over the world.
Prompt intervention is keenly needed to tackle the unconscionable dissemination
of the disease. The implementation of Artificial Intelligence (AI) has made a
significant contribution to the digital health district by applying the
fundamentals of deep learning algorithms. In this study, a novel approach is
proposed to automatically diagnose the COVID-19 by the utilization of
Electrocardiogram (ECG) data with the integration of deep learning algorithms,
specifically the Convolutional Neural Network (CNN) models. Several CNN models
have been utilized in this proposed framework, including VGG16, VGG19,
InceptionResnetv2, InceptionV3, Resnet50, and Densenet201. The VGG16 model has
outperformed the rest of the models, with an accuracy of 85.92%. Our results
show a relatively low accuracy in the rest of the models compared to the VGG16
model, which is due to the small size of the utilized dataset, in addition to
the exclusive utilization of the Grid search hyperparameters optimization
approach for the VGG16 model only. Moreover, our results are preparatory, and
there is a possibility to enhance the accuracy of all models by further
expanding the dataset and adapting a suitable hyperparameters optimization
technique.
Related papers
- A Hybrid Approach for COVID-19 Detection: Combining Wasserstein GAN with Transfer Learning [0.0]
We propose GAN-based approach to synthesize images which later fed into the deep learning models to classify images of COVID-19, Normal, and Viral Pneumonia.
This expanded dataset is then used to train four proposed deep learning models: VGG-16, ResNet-50, GoogLeNet and MNAST.
VGG-16 achieved highest accuracy of 99.17% among all four proposed schemes.
arXiv Detail & Related papers (2024-11-10T09:09:41Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
arXiv Detail & Related papers (2024-08-16T20:15:24Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data.
Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets.
This study provides a detailed discussion of the success and failure of the proposed model at an image level.
arXiv Detail & Related papers (2022-12-28T11:48:29Z) - An Interaction-based Convolutional Neural Network (ICNN) Towards Better
Understanding of COVID-19 X-ray Images [0.0]
We propose a novel Interaction-based Convolutional Neural Network (ICNN) that does not make assumptions about the relevance of local information.
We demonstrate that the proposed method produces state-of-the-art prediction performance of 99.8% on a real-world data set classifying COVID-19 Chest X-ray images.
arXiv Detail & Related papers (2021-06-13T04:41:17Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
We demonstrate the first attempt to diagnose COVID-19 using end-to-end deep learning from a crowd-sourced dataset of audio samples.
We introduce a novel modelling strategy using a custom deep neural network to diagnose COVID-19 from a joint breath and cough representation.
arXiv Detail & Related papers (2021-01-07T01:13:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.