Formation, Prevalence and Stability of Bouncing-Ball Scars
- URL: http://arxiv.org/abs/2410.07709v1
- Date: Thu, 10 Oct 2024 08:21:03 GMT
- Title: Formation, Prevalence and Stability of Bouncing-Ball Scars
- Authors: Simo Selinummi, Joonas Keski-Rahkonen, Fartash Chalangari, Esa Räsänen,
- Abstract summary: Quantum scars correspond to enhanced probability densities along unstable classical periodic orbits.
This work focuses on the formation, prevalence, and stability of linear "bouncing-ball" (BB) scars in two-dimensional (2D) quantum wells.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum scars correspond to enhanced probability densities along unstable classical periodic orbits. In recent years, research on quantum scars has extended to various systems including the many-body regime. In this work we focus on the formation, prevalence, and stability of linear "bouncing-ball" (BB) scars in two-dimensional (2D) quantum wells. These scars have relevance as effective and controllable channels in quantum transport. We utilize imaginary time propagation to solve the 2D Schr\"odinger equation within an arbitrary external confining potential, specifically the quantum well model with external perturbations. We show how BB scars begin to emerge with a single perturbative peak, such as a repulsive bump or attractive dip that simulates the effect of a charged nanotip in the system. We then identify the optimal size of the perturbative peak to maximize the prevalence of these scars. Finally, we investigate the stability of BB scars against external noise and find that some of them are remarkably robust. This suggests promising opportunities for further applications of BB scars in quantum transport.
Related papers
- Exploring the properties of quantum scars in a toy model [0.0]
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system.
Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics.
arXiv Detail & Related papers (2024-11-05T16:31:08Z) - Direct Visualization of Relativistic Quantum Scars [0.15937412565239586]
Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits (POs)
First predicted 40 years ago, scars are special eigenstates that defy ergodicity in quantum systems whose classical counterpart is chaotic.
arXiv Detail & Related papers (2024-09-16T19:18:48Z) - Stability of quantum many-body scars on PXP model [49.1574468325115]
We numerically compute the fidelity and average correlations to monitor the state evolution and to identify revivals.
Results indicate that, on the one hand, the entanglement entropy of PXP scars exhibit great sensitivity.
Other scar signatures, such as the revivals of states having large overlap with scars, show remarkable robustness.
arXiv Detail & Related papers (2024-07-19T22:39:15Z) - Antiscarring in Chaotic Quantum Wells [0.0]
We study the scarring of a single-particle wavefunction, where the quantum probability density is enhanced in the vicinity of a classical periodic orbit.
These quantum scars illustrate the quantum suppression of classical chaos, offering a unique way to explore the classical-quantum relationship beyond conventional limits.
arXiv Detail & Related papers (2024-03-26T20:06:00Z) - Unbalanced Diffusion Schr\"odinger Bridge [71.31485908125435]
We introduce unbalanced DSBs which model the temporal evolution of marginals with arbitrary finite mass.
This is achieved by deriving the time reversal of differential equations with killing and birth terms.
We present two novel algorithmic schemes that comprise a scalable objective function for training unbalanced DSBs.
arXiv Detail & Related papers (2023-06-15T12:51:56Z) - Stability of the many-body scars in fermionic spin-1/2 models [0.0]
We study the stability of the many-body scars in spin-1/2 fermionic systems under the most typical perturbations in relevant materials.
We find that some families of scars are completely insensitive to certain perturbations.
In small systems and at small perturbations, we identify and describe an additional stability exhibited by the many-body scars.
arXiv Detail & Related papers (2023-05-26T18:00:03Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Extensive multipartite entanglement from su(2) quantum many-body scars [0.0]
We numerically study signatures of multipartite entanglement in the PXP model of Rydberg atoms.
Our results identify a rich multipartite correlation structure of scarred states with significant potential as a resource in quantum enhanced metrology.
arXiv Detail & Related papers (2021-09-20T17:56:04Z) - Quantum local random networks and the statistical robustness of quantum
scars [68.8204255655161]
We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians.
We find a class of scars, that we call "statistical"
We study the scaling of the number of statistical scars with system size.
arXiv Detail & Related papers (2021-07-02T07:53:09Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.