Efficient fiber-pigtailed source of indistinguishable single photons
- URL: http://arxiv.org/abs/2410.07760v1
- Date: Thu, 10 Oct 2024 09:42:04 GMT
- Title: Efficient fiber-pigtailed source of indistinguishable single photons
- Authors: Nico Margaria, Florian Pastier, Thinhinane Bennour, Marie Billard, Edouard Ivanov, William Hease, Petr Stepanov, Albert F. Adiyatullin, Raksha Singla, Mathias Pont, Maxime Descampeaux, Alice Bernard, Anton Pishchagin, Martina Morassi, Aristide Lemaître, Thomas Volz, Valérian Giesz, Niccolo Somaschi, Nicolas Maring, Sébastien Boissier, Thi Huong Au, Pascale Senellart,
- Abstract summary: We report on a novel method for fiber-pigtailing of deterministically fabricated single-photon sources.
We show that the indistinguishability and single-photon rate are stable for over ten hours of continuous operation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Semiconductor quantum dots in microcavities are an excellent platform for the efficient generation of indistinguishable single photons. However, their use in a wide range of quantum technologies requires their controlled fabrication and integration in compact closed-cycle cryocoolers, with a key challenge being the efficient and stable extraction of the single photons into a single-mode fiber. Here we report on a novel method for fiber-pigtailing of deterministically fabricated single-photon sources. Our technique allows for nanometer-scale alignment accuracy between the source and a fiber, alignment that persists all the way from room temperature to 2.4 K. We demonstrate high performance of the device under near-resonant optical excitation with g$^{(2)}$(0) = 1.3 %, a photon indistinguishability of 97.5 % and a fibered brightness of 20.8 %. We show that the indistinguishability and single-photon rate are stable for over ten hours of continuous operation in a single cooldown. We further confirm that the device performance is not degraded by nine successive cooldown-warmup cycles.
Related papers
- A Fiber-pigtailed Quantum Dot Device Generating Indistinguishable Photons at GHz Clock-rates [0.507214623687214]
We present a fiber-pigtailed cavity-enhanced source of flying qubits emitting single indistinguishable photons at clock-rates exceeding 1 GHz.
Results show that fiber-pigtailed quantum light sources based on hCBG cavities are a prime candidate for applications of quantum information science.
arXiv Detail & Related papers (2024-09-13T16:55:36Z) - Filter-free high-performance single photon emission from a quantum dot in a Fabry-Perot microcavity [11.420650731006665]
Resonant excitation with Purcell-enhanced single quantum dots (QDs) is a prominent strategy for realizing high performance solid-state single photon sources.
Traditionally, this involves polarization filtering, which limits the achievable polarization directions and the scalability of photonic states.
We have successfully tackled this challenge by employing spatially-orthogonal resonant excitation of QDs, deterministically coupled to monolithic Fabry-Perot microcavities.
The resulting source produces single photons with a simultaneous high extraction efficiency of 0.87, purity of 0.9045(4), and indistinguishability of 0.963(4).
arXiv Detail & Related papers (2024-02-18T15:31:09Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Highly efficient and indistinguishable single-photon sources via
phonon-decoupled two-color excitation [0.0]
coherent two-color pumping allows for population inversion arbitrarily close to unity in bulk quantum dots.
We calculate very high photon emission into the cavity mode (0.95 photons per pulse) together with excellent indistinguishability (0.975) in a realistic configuration.
arXiv Detail & Related papers (2022-09-16T07:54:59Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Highly photo-stable Perovskite nanocubes: towards integrated single
photon sources based on tapered nanofibers [0.0]
We present a full analysis of the optical and quantum properties of highly efficient perovskite nanocubes synthesized with an established method.
We achieve for the first time the coupling of a single perovskite nanocube with a tapered optical nanofiber in order to aim for a compact integrated single photon source for future applications.
arXiv Detail & Related papers (2020-05-19T11:03:21Z) - Efficient fiber in-line single photon source based on colloidal single
quantum dots on an optical nanofiber [0.0]
We show that a charged state (trion) of the single quantum dot exhibits a photo-stable emission of single photons with high quantum efficiency.
The device can be easily integrated to the fiber networks paving the way for potential applications in quantum networks.
arXiv Detail & Related papers (2020-03-13T05:12:38Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.