Semantic Self-Consistency: Enhancing Language Model Reasoning via Semantic Weighting
- URL: http://arxiv.org/abs/2410.07839v2
- Date: Tue, 28 Jan 2025 11:42:35 GMT
- Title: Semantic Self-Consistency: Enhancing Language Model Reasoning via Semantic Weighting
- Authors: Tim Knappe, Ryan Li, Ayush Chauhan, Kaylee Chhua, Kevin Zhu, Sean O'Brien,
- Abstract summary: Wang et al.'s self-consistency framework reveals that sampling multiple rationales before taking a majority vote reliably improves model performance across various closed-answer reasoning tasks.
Our work introduces semantic self-consistency, enhancing this approach by incorporating and analyzing both the reasoning paths of these rationales in addition to their final decisions before taking a majority vote.
- Score: 5.110108181663884
- License:
- Abstract: While large language models (LLMs) have rapidly improved their performance on a broad number of tasks, they still often fall short on reasoning tasks. As LLMs become more integrated in diverse real-world tasks, advancing their reasoning capabilities is crucial to their effectiveness in nuanced, complex problems. Wang et al.'s self-consistency framework reveals that sampling multiple rationales before taking a majority vote reliably improves model performance across various closed-answer reasoning tasks. Standard methods based on this framework aggregate the final decisions of these rationales but fail to utilize the semantic information detailed in the step-by-step reasoning paths. Our work introduces semantic self-consistency, enhancing this approach by incorporating and analyzing both the reasoning paths of these rationales in addition to their final decisions before taking a majority vote. These methods not only improve the reliability of reasoning paths but also cause more robust performance on complex reasoning tasks.
Related papers
- Instantiation-based Formalization of Logical Reasoning Tasks using Language Models and Logical Solvers [4.897782942277061]
We introduce Semantic Self-Verification (SSV), a novel approach to accurately formulate the reasoning problem from natural language to the formal language of the solver.
SSV uses a consistency-based approach to produce strong abstract formalizations of problems using concrete instantiations that are generated by the model and verified by the solver.
We propose such *near-certain reasoning* as a new approach to reduce the need for manual verification in many cases, taking us closer to more dependable and autonomous AI reasoning systems.
arXiv Detail & Related papers (2025-01-28T14:04:49Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)
FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.
We introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Learning From Correctness Without Prompting Makes LLM Efficient Reasoner [30.203952806009717]
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content.
We introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts.
arXiv Detail & Related papers (2024-03-28T02:12:49Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions.
Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework.
We propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process.
arXiv Detail & Related papers (2023-11-23T17:09:48Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
Large language models (LLMs) are difficult to verify the correctness and safety of their behavior.
One approach is to prompt LLMs to externalize their reasoning, by having them generate step-by-step reasoning as they answer a question.
This approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case.
Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT.
arXiv Detail & Related papers (2023-07-17T00:54:10Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.